RUL论文阅读
——Transfer learning for remaining useful life prediction based on consensus self-organizing models
link : article
ress
Abstract
范式都是从实验数据里归纳总结的,但是实验数据和真实数据分布不能够控制
目标域的工况是unseen的然后只有source有标签(target的工况和label都没有)
提出一种基于feature representation的TL for RUL 应用偏差预测方法,一致自适应模型,产生可迁移的feature去build RUL。特征主要是抓取不同equipment的不同
在目标域比源域更复杂的情况下预测的更好
INtroduction
对于physical model based approach 数据驱动不需要额外的知识,
但是需要cover所有情况 train和tes统一分布最好,同一space,这意味着大量的在训练过程中的相关数据要包含post development的scenarios。
但是很少有run to failure的数据,同时损坏过程都很慢
传统的假设分布都一样
为了解决这个问题,TL in 诊断和预测。TL的目的就是从不同但相关的问题中合并,通过转移知识在两个不同领域。介绍TL 符号
In this study,哪种TL,确定两个域分别是两个工况