RUL论文阅读 ——Transfer learning for remaining useful life prediction based on consensus self-organizing

RUL论文阅读

——Transfer learning for remaining useful life prediction based on consensus self-organizing models
link : article
ress

Abstract

范式都是从实验数据里归纳总结的,但是实验数据和真实数据分布不能够控制
目标域的工况是unseen的然后只有source有标签(target的工况和label都没有)
提出一种基于feature representation的TL for RUL 应用偏差预测方法,一致自适应模型,产生可迁移的feature去build RUL。特征主要是抓取不同equipment的不同
在目标域比源域更复杂的情况下预测的更好

INtroduction

对于physical model based approach 数据驱动不需要额外的知识,
但是需要cover所有情况 train和tes统一分布最好,同一space,这意味着大量的在训练过程中的相关数据要包含post development的scenarios。
但是很少有run to failure的数据,同时损坏过程都很慢
传统的假设分布都一样

为了解决这个问题,TL in 诊断和预测。TL的目的就是从不同但相关的问题中合并,通过转移知识在两个不同领域。介绍TL 符号
In this study,哪种TL,确定两个域分别是两个工况

基于多层感知机(MLP)、递归神经网络(RNN)和长短期记忆网络(LSTM)的锂电池寿命预测(Remaining Useful Life, RUL)可以通过以下步骤进行实施: 首先,我们需要收集锂电池的历史运行数据,包括电池的充放电过程,环境温度等信息。这些数据将用于训练和验证模型,从而预测出电池的剩余使用寿命。 接下来,我们可以使用MLP来进行锂电池的寿命预测。MLP是一种前馈神经网络,可以根据输入的特征数据进行预测。我们可以将锂电池的历史数据作为输入,将电池使用时间作为输出。通过调整MLP的网络结构和参数,我们可以训练出一个预测准确的模型,用于预测电池的RUL。 除了MLP,我们还可以使用RNN进行锂电池寿命预测。RNN是一种具有反馈连接的神经网络,可以对序列数据进行建模。由于电池的充放电过程具有时间序列性质,使用RNN可以更好地捕捉数据的时序信息。通过将历史充放电过程数据输入RNN模型,我们可以预测出电池的剩余使用寿命。 另外,LSTM是一种特殊类型的RNN,能够更好地处理长期依赖性问题。在电池寿命预测中,LSTM可以更好地捕捉电池的长期使用情况,从而提高预测的准确性。通过使用LSTM模型,我们可以对锂电池的寿命进行更准确的预测。 总而言之,基于MLP、RNN和LSTM的锂电池寿命预测可以通过收集历史运行数据并使用适当的神经网络模型进行训练和预测。这些模型可以根据锂电池的特性和数据特征,对电池的剩余使用寿命进行准确的预测,以便进行相应的维护和替换。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值