概率统计经典方法(2):最值统计量

次序统计量

次序统计量是统计学中的一个十分重要的统计量,用途十分广泛

统计量

统计量的定义是“样本的函数”,也就是说如果有 n n n个样本 X 1 , X 2 , … … , X n X_1,X_2,……,X_n X1,X2,,Xn ,形如
u ( X 1 , X 2 , . . . , X n ) u(X_1,X_2,...,X_n) u(X1,X2,...,Xn)
这样的函数就被称为统计量,例如
x ˉ = X 1 + X 2 + . . . + X n n \bar{x} =\dfrac{X_1+X_2+...+X_n}{n} xˉ=nX1+X2+...+Xn
s 2 = ∑ i = 1 n ( X i − x ˉ ) 2 n − 1 s^2=\dfrac{\sum_{i=1}^n {(X_i-\bar{x})^2}}{n-1} s2=n1i=1n(Xixˉ)2
这些都叫作统计量

最值分布

以下两个统计量被称为最大值与最小值
U n = m a x { X 1 , X 2 , . . . , X n } V n = m i n { X 1 , X 2 , . . . , X n } U_n = max\{ X_1,X_2,...,X_n\} \\V_n = min\{ X_1,X_2,...,X_n\} Un=max{X1,X2,...,Xn}Vn=min{X1,X2,...,Xn}
我们尝试求出他们的分布,以 U n U_n Un为例
P ( U n ≤ u ) = P ( X 1 ≤ u , X 2 ≤ u , . . . , X n ≤ u ) ( 如 果 样 本 是 独 立 样 本 ) = ∏ i = 1 n P ( X i ≤ u ) = ∏ i = 1 n F i ( u ) ( 如 果 是 同 分 布 的 样 本 ) = [ F ( u ) ] n 如 果 是 连 续 性 的 , 那 U n 的 密 度 函 数 就 是 n f ( u ) [ F ( u ) ] n − 1 P(U_n\le u)=P(X_1\le u,X_2\le u,...,Xn\le u) \\ (如果样本是独立样本)=\prod_{i=1} ^{n}P(X_i\le u)=\prod_{i=1}^{n}{F_i(u)} \\(如果是同分布的样本)=[F(u)]^n \\ 如果是连续性的,那U_n的密度函数就是nf(u)[F(u)]^{n-1} P(Unu)=P(X1u,X2u,...,Xnu)()=i=1nP(Xiu)=i=1nFi(u)()=[F(u)]nUnnf(u)[F(u)]n1
再来看 V n V_n Vn
P ( V n > v ) = P ( X 1 > v , X 2 > v , . . . , X n > v ) ( 如 果 样 本 是 独 立 样 本 ) = ∏ i = 1 n P ( X i > v ) = ∏ i = 1 n [ 1 − F i ( v ) ] ( 如 果 是 同 分 布 的 样 本 ) = [ 1 − F ( v ) ] n V n 的 分 布 函 数 是 1 − [ 1 − F ( v ) ] n 如 果 是 连 续 型 的 , 那 V n 有 密 度 函 数 n f ( v ) [ 1 − F ( v ) ] n − 1 P(V_n\gt v)=P(X_1\gt v,X_2\gt v,...,Xn\gt v) \\ (如果样本是独立样本)=\prod_{i=1} ^{n}P(X_i\gt v)=\prod_{i=1}^{n}[1-{F_i(v)}] \\(如果是同分布的样本)=[1-F(v)]^n \\ V_n的分布函数是1-[1-F(v)]^n \\ 如果是连续型的,那V_n有密度函数nf(v)[1-F(v)]^{n-1} P(Vn>v)=P(X1>v,X2>v,...,Xn>v)()=i=1nP(Xi>v)=i=1n[1Fi(v)]()=[1F(v)]nVn1[1F(v)]nVnnf(v)[1F(v)]n1

例子1 指数分布

假 设 { X i } i = 1 , 2 , . . . , n     i d d ∼ E x p ( λ ) 则 V n = m i n { X 1 , X 2 , . . . , X n } 有 密 度 函 数 F V n ( v ) = n f ( v ) [ 1 − F ( v ) ] n − 1                                                                                   = n λ e − λ v [ e − λ v ] n − 1 I { v > 0 } = ( n λ ) e − ( n λ ) v I { v > 0 } 所 以 可 以 看 出 , V n ∼ E x p ( n λ ) 假设\{Xi\}i=1,2,...,n ~~~ idd \sim Exp(\lambda) \\ 则V_n = min\{ X_1,X_2,...,X_n\} 有密度函数F_{V_n}(v) =nf(v)[1-F(v)]^{n-1} \\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=n\lambda e^{-\lambda v}[e^{-\lambda v}]^{n-1}I_{\{v\gt0\}}=(n\lambda)e^{-(n\lambda)v}I_{\{v\gt0\}} \\ 所以可以看出,V_n \sim Exp(n\lambda) {Xi}i=1,2,...,n   iddExp(λ)Vn=min{X1,X2,...,Xn}FVn(v)=nf(v)[1F(v)]n1                                                                                 =nλeλv[eλv]n1I{v>0}=(nλ)e(nλ)vI{v>0}VnExp(nλ)

例子2 均匀分布

假 设 { X i } i = 1 , 2 , . . . , n     i d d ∼ U ( 0 , 1 ) 则 U n = m a x { X 1 , X 2 , . . . , X n } 有 密 度 函 数 F U n ( u ) = n f ( u ) [ F ( u ) ] n − 1 = n u n − 1 I { 0 < u < 1 } 也 就 是 说 U n ∼ B e ( n , 1 ) 而 V n = m i n { X 1 , X 2 , . . . , X n } 有 密 度 函 数 F V n ( v ) = n f ( v ) [ 1 − F ( v ) ] n − 1 = n ( 1 − v ) n − 1 I { 0 < v < 1 } 也 就 是 说 V n ∼ B e ( 1 , n ) 假设\{Xi\}i=1,2,...,n ~~~ idd \sim U(0,1) \\ 则U_n =max \{ X_1,X_2,...,X_n\} 有密度函数F_{U_n}(u) =nf(u)[F(u)]^{n-1} \\=nu^{n-1}I_{\{0<u<1\}} \\也就是说U_n \sim Be(n,1) \\ 而V_n =min \{ X_1,X_2,...,X_n\} 有密度函数F_{V_n}(v) =nf(v)[1-F(v)]^{n-1} \\=n(1-v)^{n-1}I_{\{0<v<1\}} \\也就是说V_n \sim Be(1,n) {Xi}i=1,2,...,n   iddU(0,1)Un=max{X1,X2,...,Xn}FUn(u)=nf(u)[F(u)]n1=nun1I{0<u<1}UnBe(n,1)Vn=min{X1,X2,...,Xn}FVn(v)=nf(v)[1F(v)]n1=n(1v)n1I{0<v<1}VnBe(1,n)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值