离散傅里叶变化DFT

离散傅里叶变换(DFT

             —— 有限长序列的离散频域表示

一、预备知识

1. 余数运算表达式

设有限长序列 x(n) 的长度为N,(0~N-1期间非0),将其以N为周期作周期延拓,所得的周期信号记为

 

. DFSDFT:

从上式可知,DFS,IDFS的求和只限定在n=0n=N-1,k=0N-1的主值区间进行。

因此可得到新的定义,即有限长序列的离散傅氏变换(DFT)的定义:

x(n) X(k) 有限长序列的离散傅里叶变换对。

 

DFT与序列的DTFT和z变换的关系: 

 

x(n)NDFT:

x(n)z变换在单位圆上的N点等间隔抽样;

  x(n)DTFT在区间[0,  2Π]上的N点等间隔抽样。  


DFT的性质

1.线性

1)两序列都是N点时

2)长度N1,N2不等时

注:当两个序列作不同NDFT时,对应的频域值

        是z平面上不同点上的值,不能在频域相加。

2.序列的圆周移位

1)定义:一个有限长序列 x(n)圆周移位定义为

 这里包括三层意思:

2)圆周移位的含义

    主值序列,即只观察n=0N-1这一主值区间,

       当某一抽样从此区间一端移出时,与它相同值的抽样又从此区间的另一端进来。

        如果把 x(n)排列一个 N等分的圆周 上,序列的移位就相当于x(n)圆上旋转,故称作圆周移位。

3)圆周移位的性质

说明:有限长序列的圆周移位导致频谱线性相移,而对频谱幅度无影响。

4)调制特性

说明:时域序列的调制等效于频域的圆周移位 

推广:

3.共轭对称性

 

1)周期序列共轭对称分量共轭反对称分量

      周期为N的周期序列的共轭对称分量

2)有限长序列的圆周共轭对称分量圆周共轭反对称分量

圆周共轭对称序列满足:

圆周共轭反对称序列满足:

长度为N的有限长序列可分解圆周共轭对称分量与圆周共轭反对称 分量,二者的长度也为N

这是因为

3) 共轭对称特性之一 

4)共轭对称特性之二

5)共轭对称特性之三

 

频域圆周共轭对称

(幅度圆周偶对称,  相角圆周奇对称)

6)共轭对称特性之四

7)共轭对称特性之五、六

9)实、虚序列的对称特性

x(n)为实序列时,根据特性之三,则    X(k)=Xep(k)  

x(n)为纯虚序列时,根据特性之四,则  X(k)=Xop(k) 

4.DFT形式下的parseval定理

说明:时域计算的能量与在频域计算的能量是相等的。 

5.圆周卷积定理

1)圆周卷积和的定义

两个长度为 N 的序列 的如下计算称为圆周卷积和,用符号 表示:(N表示圆周卷积的点数)

性质:

说明:相对于圆周卷积,前面介绍的卷积称为线性卷积 

2)时域圆周卷积定理

 

 

 

 

3)频域圆周卷积定理

 

4)圆周卷积计算步骤

圆周翻褶、圆周移位、相乘、相加

注:两个序列应有相同的长度N,才能进行N点圆周卷积;

        如果长度不等,应将短序列补0,以使长度相等。

6.线性相关与圆周相关

1)线性相关

相关:两个信号之间的关联性。

    线性相关定义为

注意与线性卷积的差异:

      线性卷积:

卷积有翻褶,相关没有翻褶;相关有取共轭。

 

2)圆周相关

定义为:

性质:

2)圆周卷积等于线性卷积的条件:

 

 

所以, 圆周卷积是线性卷积的周期延拓序列的主值序列。

 

圆周相关是线性相关的周期延拓序列的主值序列 

3) 线性卷积与圆周卷积关系的应用:

LSI系统的输出

卷积计算的运算量大,可利用卷积定理在频域相乘并作逆变换来求:

 

 

 

 

 

 

 

 

     

 

                                   

 

 

            

 

 

 

         

 

 

  • 7
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 离散傅里叶变换(DFT)是指将一个离散的信号序列转换为其频域表示的过程。它把一个有限长的离散序列映射到一个有限长的频域序列。 离散傅里叶变换是傅里叶变换在离散输入上的推广。它将一个长度为N的离散序列转换为一个长度为N的频域序列。在时域上,输入序列可以表示为离散时间的采样点集合。在频域上,它表示了输入信号的不同频率成分的幅度和相位。 离散傅里叶变换的计算过程包括两个步骤:首先,通过线性组合计算正弦和余弦函数的离散采样来表示信号;然后,再次对这些离散采样应用傅里叶变换公式以得到频域表示。 离散傅里叶变换广泛应用于信号处理和图像处理等领域。它可以用于频域滤波、快速傅里叶变换(FFT)、频谱分析等。通过DFT,我们能够将一个时域上的信号转换为其频域表示,从而能够更好地理解和处理信号的频率特性。 尽管离散傅里叶变换可以通过直接计算实现,但其计算复杂度较高,特别是对于较长的输入序列。快速傅里叶变换(FFT)是一种高效的算法,能够在O(NlogN)时间复杂度内计算离散傅里叶变换,其被广泛应用于实际应用中。 总之,离散傅里叶变换是将离散序列转换为其频域表示的过程,通过DFT我们可以了解信号的频率特性,并在信号处理中得到广泛应用。 ### 回答2: 离散傅里叶变换(DFT)是将离散时间域信号转换成频域信号的一种数学变换方法。在信号处理和图像处理领域中广泛应用。 DFT的基本原理是将一个离散时间域信号分解为一系列复数的正弦和余弦函数分量,表示信号在不同频率上的振幅和相位信息。通过DFT,我们可以得到信号的频率特性,如频谱图、频率分量以及它们在时间上的实现方式。 DFT的计算是通过对输入信号的N个离散采样点进行离散傅里叶变换公式的运算得到的。公式可以描述为: X[k] = Σ(n=0 to N-1) x[n] * W^(-kn) 其中,X[k]表示输出频域信号的第k个频率分量,x[n]表示输入的时间域信号的第n个采样点,N表示信号的采样点数,W为复数旋转因子,定义为W = e^(-j2π/N)。 DFT计算的复杂度是O(N^2),这意味着当信号的采样点数增加时,计算所需的时间也会呈平方倍数增长。为了提高计算效率,可以使用快速傅里叶变换(FFT)算法,将计算复杂度降低到O(NlogN)的级别。 通过DFT,我们可以从时域的输入信号中得到其频域的频谱信息,进而可以进行频域滤波、频谱分析、频率特征提取等一系列信号处理操作。此外,DFT还广泛应用于音频处理、图像处理、通信系统等领域中。 ### 回答3: 离散傅里叶变换(Discrete Fourier Transform,DFT)是一种将离散序列(通常是时域上的信号)转换为频域上的表示的数学工具。它是傅里叶变换在离散信号上的推广。 DFT将一个长度为N的离散序列X={x_0, x_1, x_2, ..., x_{N−1}}转换为其频域表示X'={X_0, X_1, X_2, ..., X_{N−1}}。其中,X_k是X的第k个频谱系数,k=0,1,2,...,N−1。DFT的数学公式是: X_k = ∑_{n=0}^{N−1} x_n * exp(−2πikn/N),k=0,1,2,...,N−1。 DFT将一个信号分解为一系列正弦和余弦波的和,这些波的频率从0到N-1,每个波的振幅由X_k决定。相反地,逆DFT(IDFT)可以从频域表示恢复出原始的时域序列。 DFT的应用十分广泛。对于信号处理,DFT可以用于频域滤波、谱分析和频谱合成等。在通信系统中,DFT被广泛应用于正交频分复用(OFDM)技术,其中信号在频域上被划分为多个子载波进行传输,利用DFT实现时域与频域之间的转换。此外,DFT还被应用于图像处理、声音合成、压缩和音频编码等领域。 尽管DFT是一种强大的工具,它的计算复杂度较高,特别是对于大规模的输入序列。为了解决这个问题,人们发展出了快速傅里叶变换(Fast Fourier Transform,FFT)算法,它通过利用DFT的对称性和周期性,将计算复杂度从O(N^2)降低到O(NlogN)。FFT广泛应用于实际工程中,提高了计算效率。 总结来说,DFT是将离散序列转换为频域表示的数学工具,广泛应用于信号处理、通信系统、图像处理等领域。它的计算复杂度较高,但通过FFT等算法可以得到高效的计算方法,为实际应用提供了便利。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值