数字信号处理——重要对称关系及相关性质总结

文章探讨了离散傅里叶变换(DFT)的核心对称性质,包括实偶信号与实偶函数、实奇信号与虚奇函数的关系。此外,还提到了基于这些对称性的圆周共轭对称和反对称在滤波器设计中的重要性,尤其是它们如何确保线性相位的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、离散傅里叶变换中重要的对称关系:

其中:

若x(n)是实偶信号,则X(ejw)是实偶函数

若x(n)是实奇信号,则X(ejw)是虚奇函数

二、离散傅里叶变换中的重要对称关系

1、圆周共轭对称与反对称定义

 2、离散傅里叶变换DFT对称性质

三、几何对称(圆轴偶部)及几何反对称(圆轴奇部)

几何对称和几何反对称构建的滤波器都有线性相位的性质。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值