【经典算法题】排列序列
Leetcode 0060 排列序列
题目描述:Leetcode 0060 排列序列
分析
-
本题的考点:数学。
-
对于
c++
而言,可以使用next_permutation
,计算量为 n ! × n n! \times n n!×n,最大为 9 ! × 9 = 3 , 265 , 920 9! \times 9 = 3,265,920 9!×9=3,265,920,可以通过,考试肯定用这种做法。 -
下面讲解另一种做法:计数法。
-
对于
n
,我们要求第k
大的小的数,我们可以依次考虑1~n
这些位置应该放入哪个数字,从第一个位置开始考虑,如果放入1
的话,则后面还有n-1
个位置,一共有(n-1)!
种方案,比较k
和(n-1)!
的大小,如果k > (n-1)!
,说明第k
小的数必定不可能是1
开头的数字。之后将k
更新为k-(n-1)!
,考虑第一个位置放入2
,直到找到第一个位置放置的数字,使得 k ≤ ( n − 1 ) ! k \le (n-1)! k≤(n−1)!,则该数字就是第一位应该放的数字。 -
依次考虑后面
2~n
位应该放入哪些数字。注意已经用过的数字不能再使用,需要使用一个数组st
进行判重。 -
如下图,是
n=4, k=10
对应的情况:
代码
- C++
class Solution {
public:
string getPermutation(int n, int k) {
string res;
for (int i = 1; i <= n; i++) res += to_string(i);
for (int i = 0; i < k - 1; i++) {
next_permutation(res.begin(), res.end());
}
return res;
}
};
class Solution {
public:
string getPermutation(int n, int k) {
vector<int> fact(10, 1); // 阶乘
for (int i = 2; i < 10; i++) fact[i] = fact[i - 1] * i;
string res;
vector<bool> st(10); // 判重数组
for (int i = 0; i < n; i++) // 枚举每个位置, 即res[i]应该填入哪个数字
for (int j = 1; j <= n; j++) // 枚举所有数字
if (!st[j]) { // j还没被使用过
if (fact[n - 1 - i] < k) // 说明res[i]不应该放入j
k -= fact[n - 1 - i];
else {
res += to_string(j);
st[j] = true;
break; // 表示res[i]已经填入了正确的数字
}
}
return res;
}
};
- Java
class Solution {
public String getPermutation(int n, int k) {
int[] fact = new int[n];
fact[0] = 1;
for (int i = 1; i < n; i++) fact[i] = fact[i - 1] * i;
StringBuilder sb = new StringBuilder();
boolean[] st = new boolean[10];
for (int i = 0; i < n; i++)
for (int j = 1; j <= n; j++)
if (!st[j]) {
if (fact[n - 1 - i] < k) k -= fact[n - 1 - i];
else {
sb.append((char)('0' + j));
st[j] = true;
break;
}
}
return sb.toString();
}
}
- Python
class Solution:
def getPermutation(self, n: int, k: int) -> str:
fact = [1 for _ in range(n)]
for i in range(1, n):
fact[i] = fact[i - 1] * i
res = ""
st = [False for _ in range(10)]
for i in range(n):
for j in range(1, n + 1):
if not st[j]:
if fact[n - 1 - i] < k:
k -= fact[n - 1 - i]
else:
res += chr(j + ord('0'))
st[j] = True
break
return res
时空复杂度分析
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)。计数法中有两重循环。
- 空间复杂度: O ( n ) O(n) O(n)。