pytorch基础模块:Tensorboard、Dataset、Transforms、Dataloader pytorch几个重要模块:tensorboard、dataset、transforms、dataloader
最短路及图遍历 系统介绍了图的表示方式:邻接矩阵、邻接链表,以及图的绘制方式(使用networkx库);介绍了图遍历算法(深度优先、广度优先);介绍了求解图最短路的算法:Dijkstra、Floyd、A*算法
树的遍历及图的遍历 介绍了树、二叉树、二叉搜索树,重点介绍了二叉树的广度、深度优先遍历方法以及广度优先便利的应用(层次遍历、求最短路);介绍了图/网格的广度、深度优先遍历,重点介绍了深度优先遍历的应用:获取图中的路径
pairwise voting以及trueskill pairwise voting(两两投票)核心步骤介绍,基于python编程实现;使用python的trueskill库根据pairwise voting结果更新样本能力值
EM算法求解GMM的python实现——基于kMeans实现参数初始化 EM算法求解GMM的python实现——基于kMeans实现参数初始化;EM:Expectation Maximization;GMM:Gaussian Mixture Model
python类--定义及使用(类的属性及方法) python类的基础知识:类定义(变量、方法)及使用(创建对象)详细介绍了类的属性、实例属性、类方法、静态方法、实例方法;详细介绍了类的三大特性:封装、继承、多态