前言
- kafka作为一个实时的分布式消息队列,实时的生产和消费消息,这里我们可以利用SparkStreaming实时地读取kafka中的数据,然后进行相关计算。
- 在Spark1.3版本后,KafkaUtils里面提供了两个创建dstream的方法,一种为KafkaUtils.createDstream,另一种为KafkaUtils.createDirectStream。
1. KafkaUtils.createDstream方式整合Kafka
此种方式现在已被淘汰,大家可作为了解学习~
- KafkaUtils.createDstream(ssc, [zk], [group id], [per-topic,partitions] ) 使用了receivers接收器来接收数据,利用的是Kafka高层次的消费者api.
- 对于所有的receivers接收到的数据将会保存在Spark executors中.
- 然后通过Spark Streaming启动job来处理这些数据,默认会丢失.
- 可启用WAL日志,它同步将接受到数据保存到分布式文件系统上比如HDFS。 所以数据在出错的情况下可以恢复出来 。
- Spark集群中的某个executor中有一个receiver线程, 这个线程负责从kafka中获取数据.
- 当receiver线程接收到数据后会做备份处理,即把数据备份到其他的executor中,也可能会备份到这个receiver线程所以在节点的executor中.
- 当备份完毕后该现场会把每个partition的消费偏移量在zookeeper中修改,(新版本的kafka的offset保存在kafka集群中)
- 修改完offset后,该receiver线程会把消费的数据告诉Driver.
- Driver分发任务时会根据每个executor上的数据,根据数据本地性发送.
2. 代码实现
- pom文件中添加kafka依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka_0-8_2.11</artifactId>
<version>2.0.2</version>
</dependency>
- 编写Spark Streaming程序
package cn.acece.sparkStreamingKafkaTest
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
* 从kafka中拉取数据
* 读取数据时, consumer记录的offset发送回kafka中, 保存在zk中
* 需要开始WAL日志保存模式防止数据丢失, 需要设置检查点
*/
object SparkStreamingPollKafkaHighAPI {
def main(args: Array[String]): Unit = {
//1. 初始化参数,conf, sc, ssc
val conf: SparkConf = new SparkConf()
.setAppName("SparkStreamingPollKafkaHighAPI")
.setMaster("local[2]")
.set("spark.streaming.receiver.writeAheadLog.enable", "true")
val sc: SparkContext = new SparkContext(conf)
sc.setLogLevel("WARN")
val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))
//设置检查点, 开启WLA日志保存机制就要设置检查点
ssc.checkpoint("./check")
//2. 从kafka中拉取数据, KafKaUtil
val zkQuorum = "node01:2181,node02:2181,node03:2181"
val groupId = "group"
//这里的1, 代表每一个分区被N个消费者消费
val topics = Map[String,Int]("itcast"->1)
val receiver: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc,zkQuorum,groupId,topics)
//3. 从主体中获取具体的数据, 也就是value值, key是offect
val lines: DStream[String] = receiver.map(_._2)
//4. 单词计数
val words: DStream[String] = lines.flatMap(_.split(" "))
val wordAnd1: DStream[(String, Int)] = words.map((_,1))
val result: DStream[(String, Int)] = wordAnd1.reduceByKeyAndWindow((x:Int,y:Int) => x+y, Seconds(5),Seconds(5))
//5. 打印
result.print()
//6. 开启流模式
ssc.start()
ssc.awaitTermination()
}
}
3. 先启动Kafka再启动Spark Streaming程序,试试采集
- 启动zookeeper集群
zkServer.sh start
- 先启动kafka集群
kafka-server-start.sh /export/servers/kafka/config/server.properties
- 创建topic
kafka-topic.sh --create --zookeeper node01:2181 --replication-factor 1 --partitions 3 --topic kafka_spark
- 向topic中生产数据, 通过shell命令向topic发送消息
kafka-console-producer.sh --broker-list node01:9092 --topic kafka-spark
- 在IDEA中执行2中编写的Spark Streaming程序
- 运行代码, 查看控制台结果
4. 总结
- 通过这种方式实现,刚开始的时候系统正常运行,没有发现问题,但是如果系统异常重新启动sparkstreaming程序后,发现程序会重复处理已经处理过的数据.
- 这种基于receiver的方式,是使用Kafka的高级API,topic的offset偏移量在ZooKeeper中。
- 这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据只被处理一次,可能会处理两次。
- 因为Spark和ZooKeeper之间可能是不同步的。官方现在也已经不推荐这种整合方式,我们使用官网推荐的第二种方式kafkaUtils的createDirectStream()方式。