DStream实战之Spark Streaming整合Kafka, 通过 KafkaUtils.createDstream方式整合Kafka 37

前言

  • kafka作为一个实时的分布式消息队列,实时的生产和消费消息,这里我们可以利用SparkStreaming实时地读取kafka中的数据,然后进行相关计算。
  • 在Spark1.3版本后,KafkaUtils里面提供了两个创建dstream的方法,一种为KafkaUtils.createDstream,另一种为KafkaUtils.createDirectStream

1. KafkaUtils.createDstream方式整合Kafka

此种方式现在已被淘汰,大家可作为了解学习~

  • KafkaUtils.createDstream(ssc, [zk], [group id], [per-topic,partitions] ) 使用了receivers接收器来接收数据,利用的是Kafka高层次的消费者api.
  • 对于所有的receivers接收到的数据将会保存在Spark executors中.
  • 然后通过Spark Streaming启动job来处理这些数据,默认会丢失.
  • 可启用WAL日志,它同步将接受到数据保存到分布式文件系统上比如HDFS。 所以数据在出错的情况下可以恢复出来 。
    在这里插入图片描述
  • Spark集群中的某个executor中有一个receiver线程, 这个线程负责从kafka中获取数据.
    在这里插入图片描述
  • receiver线程接收到数据后会做备份处理,即把数据备份到其他的executor中,也可能会备份到这个receiver线程所以在节点的executor中.
  • 当备份完毕后该现场会把每个partition消费偏移量zookeeper中修改,(新版本的kafka的offset保存在kafka集群中)
  • 修改完offset后,该receiver线程会把消费的数据告诉Driver.
  • Driver分发任务时会根据每个executor上的数据,根据数据本地性发送.

2. 代码实现

  • pom文件中添加kafka依赖
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka_0-8_2.11</artifactId>
    <version>2.0.2</version>
</dependency>
  • 编写Spark Streaming程序
package cn.acece.sparkStreamingKafkaTest

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
/**
  * 从kafka中拉取数据
  *   读取数据时, consumer记录的offset发送回kafka中, 保存在zk中
  *   需要开始WAL日志保存模式防止数据丢失, 需要设置检查点
  */
object SparkStreamingPollKafkaHighAPI {
  def main(args: Array[String]): Unit = {
    //1. 初始化参数,conf, sc, ssc
    val conf: SparkConf = new SparkConf()
      .setAppName("SparkStreamingPollKafkaHighAPI")
      .setMaster("local[2]")
      .set("spark.streaming.receiver.writeAheadLog.enable", "true")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))
    //设置检查点, 开启WLA日志保存机制就要设置检查点
    ssc.checkpoint("./check")

    //2. 从kafka中拉取数据, KafKaUtil
    val zkQuorum = "node01:2181,node02:2181,node03:2181"
    val groupId = "group"
    //这里的1, 代表每一个分区被N个消费者消费
    val topics = Map[String,Int]("itcast"->1)
    val receiver: ReceiverInputDStream[(String, String)] = KafkaUtils.createStream(ssc,zkQuorum,groupId,topics)

    //3. 从主体中获取具体的数据, 也就是value值, key是offect
    val lines: DStream[String] = receiver.map(_._2)

    //4. 单词计数
    val words: DStream[String] = lines.flatMap(_.split(" "))
    val wordAnd1: DStream[(String, Int)] = words.map((_,1))
    val result: DStream[(String, Int)] = wordAnd1.reduceByKeyAndWindow((x:Int,y:Int) => x+y, Seconds(5),Seconds(5))

    //5. 打印
    result.print()

    //6. 开启流模式
    ssc.start()
    ssc.awaitTermination()
  
  }
}

3. 先启动Kafka再启动Spark Streaming程序,试试采集

  • 启动zookeeper集群
zkServer.sh start
  • 先启动kafka集群
kafka-server-start.sh /export/servers/kafka/config/server.properties
  • 创建topic
kafka-topic.sh --create --zookeeper node01:2181 --replication-factor 1 --partitions 3 --topic kafka_spark
  • 向topic中生产数据, 通过shell命令向topic发送消息
kafka-console-producer.sh --broker-list node01:9092 --topic kafka-spark

在这里插入图片描述

  • 在IDEA中执行2中编写的Spark Streaming程序
  • 运行代码, 查看控制台结果
    在这里插入图片描述

4. 总结

  • 通过这种方式实现,刚开始的时候系统正常运行,没有发现问题,但是如果系统异常重新启动sparkstreaming程序后,发现程序会重复处理已经处理过的数据.
  • 这种基于receiver的方式,是使用Kafka的高级APItopic的offset偏移量在ZooKeeper中
  • 这是消费Kafka数据的传统方式。这种方式配合着WAL机制可以保证数据零丢失的高可靠性,但是却无法保证数据只被处理一次,可能会处理两次
  • 因为Spark和ZooKeeper之间可能是不同步的。官方现在也已经不推荐这种整合方式,我们使用官网推荐的第二种方式kafkaUtils的createDirectStream()方式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值