聚类新突破!K-Means算法新成果性能起飞,预测准确率高达94.61%

k-means聚类算法,一种原理简单、实现容易、好调参、收敛速度快而且聚类效果优秀的聚类工具。

这种算法的核心在于它可以通过迭代计算,将数据点归入预设数量的簇中,让簇内数据点相似度高,簇间数据点相似度低,从而实现高效的数据聚类。因此它在众多应用场景下都是首选,特别是金融市场预测,有成果甚至已经达到94.61%的准确率。

不过k-means基本版本还存在一些问题,为了提高聚类的质量和模型性能,研究者们致力于改进k-means。目前关于k-means的改进思路主要有初始化策略、考虑数据的结构、动态调整K值等,很多有效的改进策略已经发表。

为了帮助同学们找到新的idea,我这回挑选了9个k-means的改进与应用方案,基本都是最新的,创新点的参考价值也比较高,相关代码也有。

论文原文+开源代码需要的同学看文末

改进

Local Search k-means++ with Foresight

方法:论文提出了一种名为Foresight LS++(FLS++)的新算法,旨在提高K-means聚类的性能。FLS++算法通过结合局部搜索技术和d2-sampling初始化方法,以期望在解质量和运行时间上都有所提升。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值