
信号处理
文章平均质量分 89
GHelpU
这个作者很懒,什么都没留下…
展开
-
非随机参数估计的克拉美罗界(Cramer-Rao Bounds)
克拉美罗界用以研究参数估计问题的一套理论,本博文从理论、案例和实验为读者介绍估计非随机参数时,相应的克拉美罗界。原创 2020-10-24 14:58:49 · 8150 阅读 · 3 评论 -
卡尔曼滤波系列——(六)卡尔曼平滑
卡尔曼平滑算法是其中常用的一种,又称为RTS平滑——Rauch–Tung–Striebel smoother (RTSS, Rauch et al., 1965),本篇博文将详细介绍该算法。原创 2020-05-12 01:17:09 · 29825 阅读 · 15 评论 -
卡尔曼滤波系列——(三)粒子滤波(重写)
基于序贯重要性采样方法的例子滤波(Partical Filter,PF)是一个有效的替代方法,它通过蒙特卡洛近似的方式获得贝叶斯滤波问题中后验分布的解,从而达到滤波或者状态估计的目的。原创 2020-03-23 18:55:57 · 4678 阅读 · 8 评论 -
卡尔曼滤波系列(五)——奇异值鲁棒的卡尔曼滤波算法
传统的卡尔曼滤波算法假定了噪声服从高斯分布,而实际应用场景中,由于传感器受到各种因素的影响,可能存在部分远偏离预期值的观测结果,称为奇异值。此时观测噪声不再是高斯分布的,而类似于student-t分布,对于这样的情况,传统的卡尔曼滤波算法在估计系统状态时会极大地受到奇异值带来的影响,从而导致系统状态估计结果远偏离预期,此时需要对卡尔曼滤波做一些调整,使其能适用于非高斯的噪声分布。原创 2020-03-23 01:29:17 · 7220 阅读 · 5 评论 -
详解DBSCAN聚类算法
DBSCAN是一种基于密度的聚类算法,它可以在带噪声的数据空间中发现任意形状的类别簇。原创 2019-04-22 16:21:49 · 9042 阅读 · 1 评论 -
恒虚警检测(Constant False Alarm Rate, CFAR)
恒虚警检测技术是雷达系统在保持虚警概率恒定条件下对接收机输出的信号与噪声作判别以确定目标信号是否存在的技术。原创 2019-04-22 14:18:58 · 51945 阅读 · 13 评论 -
卡尔曼滤波系列——(四)无损卡尔曼滤波
1 简介无损卡尔曼滤波又称无迹卡尔曼滤波(Unscented Kalman Filter,UKF),是无损变换(Unscented Transform,UT)与标准卡尔曼滤波体系的结合,通过UT变换使非线性系统方程适用于线性假设下的标准卡尔曼体系。与EKF不同的是,UKF是通过无损变换使非线性系统方程适用于线性假设下的标准Kalman滤波体系,而不是像EKF那样,必须通过线性化非线性函数实...原创 2019-04-07 15:59:27 · 19383 阅读 · 17 评论 -
卡尔曼滤波系列——(三)粒子滤波
1 简介粒子滤波(Partical Filter,PF)就是通过寻找一组在状态空间中传播的随机样本来近似的表示概率密度函数,用样本均值代替积分运算,进而获得系统状态的最小方差估计的过程,这些样本被称为“粒子”,故叫做粒子滤波。粒子滤波(PF: Particle Filter)的思想基蒙特卡洛方法(Monte Carlo methods),它是利用粒子集来表示概率,可以用在任何形式的状态空间...原创 2019-04-06 23:56:52 · 12260 阅读 · 3 评论 -
卡尔曼滤波系列——(二)扩展卡尔曼滤波
更新日志:2020.02.13:修改了第三节推导中的公式错误1 简介扩展卡尔曼滤波(Extended Kalman Filter,EKF)是标准卡尔曼滤波在非线性情形下的一种扩展形式,它是一种高效率的递归滤波器(自回归滤波器)。EKF的基本思想是利用泰勒级数展开将非线性系统线性化,然后采用卡尔曼滤波框架对信号进行滤波,因此它是一种次优滤波。2 算法介绍2.1 泰勒级数...原创 2019-04-06 16:33:48 · 95842 阅读 · 77 评论 -
卡尔曼滤波系列——(一)标准卡尔曼滤波
卡尔曼滤波(Kalman Filter)是一种利用线性系统状态方程,利用对系统的观测数据,对系统状态进行最优估计的算法。由于观测数据受到系统中的噪声和干扰的影响,所以系统状态的估计过程也可看作是滤波过程。应用场景之一有利用传感器跟踪感兴趣目标的位置,传感器获取的目标距离、速度、方位角等观测值往往含有噪声。卡尔曼滤波利用目标的动态信息与观测结果相结合,抑制噪声的影响,从而获得一个关于目标位置更准确的估计,这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(原创 2019-03-03 16:03:58 · 46328 阅读 · 34 评论