非随机参数估计的克拉美罗界(Cramer-Rao Bounds)

更新日志:

2020.10.24:发布

1 简介

克拉美罗界用以研究参数估计问题的一套理论。参数估计是现代信号处理领域的一个重头戏,人为观测到的信号往往是物理模型产生的,为了研究信号的产生过程,我们会设计各种各样的数学模型以近似物理模型。这些数学模型往往是由模型的结构和参数组成,若给定了模型的结构,而模型的参数还未知的话,就可以利用观测数据通过各种算法估计这些参数(这就叫后验)。这些估计参数的方法就很多了,可以分成两大类,一类是有偏估计(估计值的期望与待估参数的真值之间有系统误差),一类是无偏估计(估计值的期望与待估参数的真值之间无系统误差)。克拉美罗界只适用于无偏估计,它认为,任何无偏估计量的方差不会低于克拉美罗界,也就是说,设计的参数估计算法再强,给出的无偏估计量的方差不可能低于下界,因此也称其为Cramer-Rao Lower Bounds(CRLB),意为克拉美罗下界。

本篇博文主要研究非随机参数估计的克拉美罗下界,非随机参数(nonrandom parameter)是指参数的值是固定的,不随观测的变化而变化。

一个模型只要给定,估计参数的下界就固定了,所以我们在设计算法时候,设计的结果往往会通过多次试验计算估计的方差,看与下界的距离有多少,就知道算法好不好了。当然,如果是有偏估计的话,那方差完全有可能是低于下界的,但是有偏估计一般就没什么意义了,比如待估计的参数 a = 5 a=5 a=5,然后我每次估计时候都认为是8,那方差就是0了,但是这样的估计就失去意义了,所以这里只考虑无偏估计。

举个简单的例子,现在有一个电压真值为5V的接头,我们希望通过电压表测量这个电压(也就是待估计的非随机参数),但是电压表不准确,测量值老是跳,结果等于这个真值5V加上零均值的高斯白噪声。为了估计电压,我们采用这样的方法:每测得一个值,就认为这是接头的电压了。因此,比如总共测了100次,可以得到100个估计值,这100个估计值可能都接近于5V(如果测量次数接近于无穷的话,那么这些估计值的平均是等于5V的,因为这是个无偏估计方法),但是估计值都各不相等,那么这100个值的方差必然大于克拉美罗界。

那么到底怎么定义克拉美罗界呢?如下。(注意,本博文中加粗的符号表示向量或者矩阵,不加粗的表示标量)

2 克拉美罗界的定义

用向量 x \bf{x} x 表示待估计的参数, z \bf{z} z 表示对参数的测量, x ^ ( z ) \hat{\bf{x}}(\bf{z}) x^(z) 表示根据测量给出的参数估计结果,叫估计子。

无偏估计子 x ^ ( z ) \hat{\bf{x}}(\bf{z}) x^(z) 给出的结果往往是围绕着参数真值 x \bf{x} x 波动,为了描述波动的程度,定义误差的方差,即平均平方误差(mean-square error matrix)为
Λ ϵ = M S E ( x ^ ( z ) ) ≜ E { [ x ^ ( z ) − x ] [ x ^ ( z ) − x ] T } {\bf \Lambda}_{\epsilon}={\rm MSE}(\hat{\bf{x}}({\bf{z}})) \triangleq {\bf E}\{[\hat{\bf x}({\bf z})-{\bf x}][\hat{\bf x}({\bf z})-{\bf x}] ^T\} Λϵ=MSE(x^(z))E{[x^(z)x][x^(z)x]T}

p ( z ∣ x ) p({\bf z}|{\bf x}) p(zx) 表示测量的概率密度函数,定义尺寸为 K × K K \times K K×K 的Fisher信息矩阵(Fisher’s information matrix ,FIM)的矩阵 J F ( x ) {\bf J}_F ({\bf x}) JF(x) 如下:
J F ( x ) ≜ E { [ ▽ x ln ⁡ p ( z ∣ x ) ] [ ▽ x ln ⁡ p ( z ∣ x ) ] T } = − E { ▽ x [ ▽ x ln ⁡ p ( z ∣ x ) ] T } \begin{aligned} {\bf J}_F ({\bf x}) &\triangleq {\bf E}\{[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})][\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] ^T\} \\ &= -{\bf E}\{\triangledown_{\bf x}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] ^T\} \end{aligned} JF(x)E{[xlnp(zx)][xlnp(zx)]T}=E{x[xlnp(zx)]T}

其中矩阵 J F ( x ) {\bf J}_F ({\bf x}) JF(x) 内部的每一个元素可以写成
J F i j ( x ) ≜ E { ∂ ln ⁡ p ( z ∣ x ) ∂ x i ∂ ln ⁡ p ( z ∣ x ) ∂ x j } = − E { ∂ 2 ln ⁡ p ( z ∣ x ) ∂ x i ∂ x j } \begin{aligned} {J}_{F_{ij}} ({\bf x}) &\triangleq {\bf E}\{\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_i}\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}\} \\ &= -{\bf E}\{\frac{\partial^2 \ln p({\bf z}|{\bf x})}{\partial x_i \partial x_j}\} \end{aligned} JFij(x)E{xilnp(zx)xjlnp(zx)}=E{xixj2lnp(zx)}

那么克拉美罗界具有如下性质:
Λ ϵ − J F − 1 ( x ) ⩾ 0 {\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1} ({\bf x})\geqslant {\bf 0} ΛϵJF1(x)0

这里 ⩾ \geqslant 表示左边的矩阵式子是非负定的。

另外,这一不等式也表明了,左边的矩阵式子所有的子矩阵都是非负定的,其中对角线上的第 i i i 元素满足
σ ϵ i 2 ≜ V a r [ x ^ i ( z ) − x i ] ⩾ J F i i ( x ) \sigma_{\epsilon_i}^2 \triangleq {\rm Var}[\hat{x}_i({\bf z})-x_i]\geqslant J_F^{ii}({\bf x}) σϵi2Var[x^i(z)xi]JFii(x)

当且仅当
x ^ ( z ) − x = k ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] \hat{{\bf x}}({\bf z})-{\bf x}={\bf k}({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] x^(z)x=k(x)[xlnp(zx)]

其中 k ( x ) = J F − 1 ( x ) {\bf k}({\bf x})={\bf J}_F^{-1}({\bf x}) k(x)=JF1(x)

上面两个不等式子的等号成立。

3 示例

3.1 理论案例

仍然以简介中电压测量为例,接头电压固定为 x x x ,即为待估计的量,而电压测量时,测量受到均值为 μ = 0 \mu=0 μ=0 、方差为 σ 2 \sigma^2 σ2 的加性高斯白噪声 n n n 的影响,即
z = x + n z=x+n z=x+n

因此,测量的概率密度函数表示为
p ( z ∣ x ) = 1 2 π σ exp ⁡ [ − ( z − x ) 2 2 σ 2 ] p(z|x)=\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(z-x)^2}{2\sigma^2}\right] p(zx)=2π σ1exp[2σ2(zx)2]

那么该模型的Fisher信息矩阵(在本例中其实是标量不算是矩阵,因此下面没有用粗体)为
J F ( x ) = − ∂ 2 ln ⁡ [ p ( z ∣ x ) ] ∂ x 2 = ∂ 2 ∂ x 2 ( z − x ) 2 2 σ 2 = 1 σ 2 J_F(x)=-\frac{\partial^2 \ln [p(z|x)]}{\partial x^2}=\frac{\partial^2}{\partial x^2}\frac{(z-x)^2}{2\sigma^2}=\frac{1}{\sigma^2} JF(x)=x22ln[p(zx)]=x222σ2(zx)2=σ21

那么克拉美罗下界为
Λ ϵ = M S E ( x ^ ( z ) ) ⩾ σ 2 {\Lambda}_{\epsilon} = {\rm MSE}{(\hat{x}({z}))}\geqslant \sigma^2 Λϵ=MSE(x^(z))σ2

也就是说,设计的算法只要是无偏的,估计子的方差就一定比 σ 2 \sigma^2 σ2 大。

3.2 实验验证

若我们的估计子取为观测,即 x ^ ( z ) = z \hat{x}({z})=z x^(z)=z

那么接下来看看该估计子的均值:
E [ x ^ ( z ) ] = ∫ − ∞ ∞ z p ( z ∣ x ) d z = x E[\hat{x}(z)]=\int_{-\infty}^{\infty}zp(z|x)dz=x E[x^(z)]=zp(zx)dz=x

说明该估计子是无偏的,然后计算该估计子的方差
V a r [ x ^ ( z ) ] = ∫ − ∞ ∞ ( z − x ) 2 p ( z ∣ x ) d z = σ 2 {\rm Var}[\hat{x}(z)]=\int_{-\infty}^{\infty}(z-x)^2p(z|x)dz=\sigma^2 Var[x^(z)]=(zx)2p(zx)dz=σ2

估计子的方差恰好等于CRB,说明这种估计方法是最好的。

做个简单的实验验证一下,接头电压为5V,然后我们选取噪声的方差分别为 0.5 ~ 5 ,每一个噪声参数,都做10000次重复实验,然后计算这10000次实验给出的估计子的方差,再与克拉美罗下界对比。仿真代码如下,

// A Matlab Code
clear; close all; clc;
x = 5;              % 待估计的电压 5V
Times = 10000;      % 每个噪声模型下,都做10000次仿真
miu = 0;            % 噪声的均值为0
index = 1;          % 索引
for sigma = 0.5:0.5:5
    x_hat = zeros(Times, 1);
    for t = 1:Times
        n = normrnd(miu, sigma, 1, 1);  % 仿真高斯白噪声
        z = x + n;                      % 观测结果
        x_hat(t, 1) = z;                % 认为观测的值即为电压值
    end
    MSE(index, 1) = var(x_hat);         % 计算每个方差为sigma的噪声对应的估计子的方差,即为MSE
    CRB(index, 1) = sigma^2;            % 计算每个方差为sigma的噪声对应的克拉美罗下界
    index = index + 1;
end

figure;hold on;
plot(0.5:0.5:5, MSE, 'LineWidth',2, 'Marker', 'o');
plot(0.5:0.5:5, CRB, 'LineWidth',2, 'color', [119, 172, 48]/255);
legend('MSE', 'CRB');
title('估计子的方差与克拉美罗下界的对比');

仿真结果如下图,
仿真结果
实验结果非常直观了,MSE非常接近CRB,与我们的理论是一致的,当然一些偏差是合理的,因为只是进行了10000次实验,难免会有一点点小偏差,如果是无穷次实验,那就绝对一致了。

这是只观测一次的情况下,最优的办法了,所以平时我们基本电压表测出怎样的结果,就认为实际的电压是啥样子的。如果读者有个疑问,我们不是会连续测很多次,然后取平均作为最终的估计值,那这个时候做很多很多次试验,只要每次试验的测量次数足够多,那这些试验的估计子的方差不就非常接近于零了,那怎么会大于CRB呢?其实不然,上面我们算的CRB都是标量的,就是只得到一次结果便给出估计,如果测量次数非常多的话,那CRB就是不是上面这么3.1节这么算的了,读者可以自行尝试一下,也欢迎读者在评论区给出答案哈~

下面的证明如果读者不感冒就可以跳过了,如果想进一步深入研究克拉美罗界的理论的话,建议好好品尝一下。

4 证明

4.1 不等式的证明

因为 x ^ i ( z ) \hat{x}_i({\bf z}) x^i(z) 是无偏的,所以有
∫ − ∞ ∞ [ x ^ i ( z ) − x i ] p ( z ∣ x ) d z = 0 \int_{-\infty}^{\infty}[\hat{x}_i({\bf z})-x_i]p({\bf z}|{\bf x})d{\bf z}=0 [x^i(z)xi]p(zx)dz=0

x j x_j xj 求偏导,有
− δ i j ∫ − ∞ ∞ p ( z ∣ x ) d z + ∫ − ∞ ∞ [ x ^ i ( z ) − x i ] ∂ p ( z ∣ x ) ∂ x j d z = 0 -\delta_{ij}\int_{-\infty}^{\infty}p({\bf z}|{\bf x})d{\bf z}+\int_{-\infty}^{\infty}[\hat{x}_i({\bf z})-x_i]\frac{\partial p({\bf z}|{\bf x})}{\partial x_j}d{\bf z}=0 δijp(zx)dz+[x^i(z)xi]xjp(zx)dz=0

其中 δ i j \delta_{ij} δij i = j i=j i=j 时取值1,其他情况取值0。显然上式的第一个积分等于1,而第二个积分式子为
∂ p ( z ∣ x ) ∂ x j = ∂ ln ⁡ p ( z ∣ x ) ∂ x j p ( z ∣ x ) \frac{\partial p({\bf z}|{\bf x})}{\partial x_j}=\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}p({\bf z}|{\bf x}) xjp(zx)=xjlnp(zx)p(zx)

因此可以重新写为
∫ − ∞ ∞ { [ x ^ i ( z ) − x i ] p ( z ∣ x ) } { p ( z ∣ x ) ∂ ln ⁡ p ( z ∣ x ) ∂ x j } d z = δ i j \int_{-\infty}^{\infty}\left\{[\hat{x}_i({\bf z})-x_i]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}\right\}d{\bf z}=\delta_{ij} {[x^i(z)xi]p(zx) }{p(zx) xjlnp(zx)}dz=δij

或者写成矩阵的形式为,其中 I {\bf I} I 表示单位阵
∫ − ∞ ∞ { [ x ^ ( z ) − x ] p ( z ∣ x ) } { p ( z ∣ x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T } d z = I \int_{-\infty}^{\infty}\left\{[\hat{\bf x}({\bf z})-{\bf x}]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T\right\}d{\bf z}={\bf I} {[x^(z)x]p(zx) }{p(zx) [xlnp(zx)]T}dz=I

为了用上Schwarz不等式,定义两个任意的 K × 1 K \times 1 K×1 大小的向量 b 1 {\bf b}_1 b1 b 2 {\bf b}_2 b2 ,且这两个向量与测量 z {\bf z} z 无关,现在,对上面的等式左乘 b 1 T {\bf b}_1^T b1T ,右乘 b 2 {\bf b}_2 b2 ,得到
∫ − ∞ ∞ { b 1 T [ x ^ ( z ) − x ] p ( z ∣ x ) } { p ( z ∣ x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T b 2 } d z = b 1 T b 2 \int_{-\infty}^{\infty}\left\{{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2\right\}d{\bf z}={\bf b}_1^T{\bf b}_2 {b1T[x^(z)x]p(zx) }{p(zx) [xlnp(zx)]Tb2}dz=b1Tb2

这样以来,上面式子花括号中的量都变成标量了,利用Schwarz不等式,可以得到
( b 1 T b 2 ) 2 ⩽ ∫ − ∞ ∞ b 1 T [ x ^ ( z ) − x ] [ x ^ ( z ) − x ] T b 1 p ( z ∣ x ) d z ⋅ ∫ − ∞ ∞ b 2 T [ ▽ x ln ⁡ p ( z ∣ x ) ] [ ▽ x ln ⁡ p ( z ∣ x ) ] T b 2 p ( z ∣ x ) d z ({\bf b}_1^T{\bf b}_2)^2 \leqslant \int_{-\infty}^{\infty}{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}][\hat{\bf x}({\bf z})-{\bf x}]^T {\bf b}_1 {p({\bf z}|{\bf x})} d{\bf z}\\ \cdot \int_{-\infty}^{\infty} {\bf b}_2^T [\triangledown_{\bf x}\ln p({\bf z}|{\bf x})][\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2 {p({\bf z}|{\bf x})}d{\bf z} (b1Tb2)2b1T[x^(z)x][x^(z)x]Tb1p(zx)dzb2T[xlnp(zx)][xlnp(zx)]Tb2p(zx)dz

等号成立的条件是当且仅当
b 1 T [ x ^ ( z ) − x ] = C ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T b 2 {\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2 b1T[x^(z)x]=C(x)[xlnp(zx)]Tb2

其中 C ( x ) C({\bf x}) C(x) 表示一个只与 x {\bf x} x 有关、与 z {\bf z} z 无关的量。如果把这里的两个积分公式分别换成 Λ ϵ {\bf \Lambda}_{\epsilon} Λϵ J F ( x ) {\bf J}_F({\bf x}) JF(x) ,那么这个式子就可以简化为
( b 1 T b 2 ) 2 ⩽ [ b 1 T Λ ϵ b 1 ] ⋅ [ b 2 T J F ( x ) b 2 ] ({\bf b}_1^T{\bf b}_2)^2 \leqslant [{\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1] \cdot [{\bf b}_2^T {\bf J}_F({\bf x}){\bf b}_2] (b1Tb2)2[b1TΛϵb1][b2TJF(x)b2]

考虑到以上式子中 b 1 {\bf b}_1 b1 b 2 {\bf b}_2 b2 都是任意选取的,那么可以令
b 2 = J F − 1 ( x ) b 1 {\bf b}_2={\bf J}_F^{-1}({\bf x}){\bf b}_1 b2=JF1(x)b1

这样上一个不等式就可以写成
[ b 1 T Λ ϵ b 1 ] ⋅ [ b 1 T J F − 1 ( A ) b 1 ] ⩾ [ b 1 T J F − 1 ( x ) b 1 ] 2 [{\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1] \cdot [{\bf b}_1^T {\bf J}_F^{-1}({\bf A}){\bf b}_1] \geqslant [{\bf b}_1^T {\bf J}_F^{-1}({\bf x}){\bf b}_1] ^2 [b1TΛϵb1][b1TJF1(A)b1][b1TJF1(x)b1]2

于是就可以简化为
b 1 T Λ ϵ b 1 ⩾ b 1 T J F − 1 ( x ) b 1 {\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1 \geqslant {\bf b}_1^T {\bf J}_F^{-1}({\bf x}){\bf b}_1 b1TΛϵb1b1TJF1(x)b1

或者写成
b 1 T [ Λ ϵ − J F − 1 ( x ) ] b 1 ⩾ 0 {\bf b}_1^T[{\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1}({\bf x})] {\bf b}_1 \geqslant 0 b1T[ΛϵJF1(x)]b10

由于前面已经说明了 b 1 {\bf b}_1 b1 的任意性,在任意选取 b 1 {\bf b}_1 b1 时上面这一不等式都必然成立,因此
Λ ϵ − J F − 1 ( x ) ⩾ 0 {\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1}({\bf x}) \geqslant {\bf 0} ΛϵJF1(x)0

这里的 ⩾ \geqslant 仍然表示左边的矩阵式子是非负定的。

4.2 等号成立条件

再次利用 4.1 小节中的两个式子(直接摘自上小节),第二个式子为等号成立的条件
b 2 = J F − 1 ( x ) b 1 {\bf b}_2={\bf J}_F^{-1}({\bf x}){\bf b}_1 b2=JF1(x)b1

b 1 T [ x ^ ( z ) − x ] = C ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T b 2 {\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2 b1T[x^(z)x]=C(x)[xlnp(zx)]Tb2

把第一个式子代入到第二个式子,则等号成立的条件变为
b 1 T [ x ^ ( z ) − x ] = C ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T J F − 1 ( x ) b 1 {\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf J}_F^{-1}({\bf x}){\bf b}_1 b1T[x^(z)x]=C(x)[xlnp(zx)]TJF1(x)b1

考虑到 b 1 {\bf b}_1 b1 的任意性,则可以进一步简化为
[ x ^ ( z ) − x ] T = C ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] T J F − 1 ( x ) [\hat{\bf x}({\bf z})-{\bf x}]^T=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf J}_F^{-1}({\bf x}) [x^(z)x]T=C(x)[xlnp(zx)]TJF1(x)

重写该式子为
[ ▽ x ln ⁡ p ( z ∣ x ) ] T = [ x ^ ( z ) − x ] T J F ( x ) C ( x ) [\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T=[\hat{\bf x}({\bf z})-{\bf x}]^T\frac{{\bf J}_F({\bf x})}{C({\bf x})} [xlnp(zx)]T=[x^(z)x]TC(x)JF(x)

式子两边同时对 x {\bf x} x 求偏导,得到
▽ x [ ▽ x ln ⁡ p ( z ∣ x ) ] T = − I J F ( x ) C ( x ) + [ x ^ ( z ) − x ] T ▽ x [ J F ( x ) C ( x ) ] \triangledown_{\bf x}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T=-{\bf I}\frac{{\bf J}_F({\bf x})}{C({\bf x})}+[\hat{\bf x}({\bf z})-{\bf x}]^T\triangledown_{\bf x}\left[ \frac{{\bf J}_F({\bf x})}{C({\bf x})} \right] x[xlnp(zx)]T=IC(x)JF(x)+[x^(z)x]Tx[C(x)JF(x)]

这样,对等式两边同时乘以 -1,然后同时取期望,由于估计量是无偏的,则等号右边的第二项的期望为 0 ,那么可以得到
J F ( x ) = 1 C ( x ) J F ( x ) {\bf J}_F({\bf x})=\frac{1}{C({\bf x})}{\bf J}_F({\bf x}) JF(x)=C(x)1JF(x)

因此等号成立的条件对应于 C ( x ) = 1 C({\bf x})=1 C(x)=1 ,于是等号成立的条件等价于
x ^ ( z ) − x = J F − 1 ( x ) [ ▽ x ln ⁡ p ( z ∣ x ) ] \hat{\bf x}({\bf z})-{\bf x}={\bf J}_F^{-1}({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] x^(z)x=JF1(x)[xlnp(zx)]

或者写成
▽ x ln ⁡ p ( z ∣ x ) = J F ( x ) [ x ^ ( z ) − x ] \triangledown_{\bf x}\ln p({\bf z}|{\bf x})={\bf J}_F({\bf x})[\hat{\bf x}({\bf z})-{\bf x}] xlnp(zx)=JF(x)[x^(z)x]

这就是克拉美罗界不等式中等号成立的条件了,当无偏估计子满足这一条件时,该估计子的方差达到克拉美罗界,便也是最好的了。

4.3 补充性质

有些时候,我们需要估计的是以上所述的 K × 1 K \times 1 K×1 大小的参数向量 x {\bf x} x 的函数,而并非 x {\bf x} x 本身。假设要估计的量是 d = γ ( x ) {\bf d}=\bf \gamma(\bf x) d=γ(x) ,这里 d = [ d 1 , d 2 , . . . , d M ] T {\bf d}=[d_1,d_2,...,d_M]^T d=[d1,d2,...,dM]T M M M K K K 并没有关系,方程可能是非线性的。估计误差表示为
d ^ ( z ) − γ ( x ) ≜ d ϵ \hat{\bf d}({\bf z})-\gamma(\bf x) \triangleq {\bf d}_{\epsilon} d^(z)γ(x)dϵ

如果假设估计是无偏的,估计误差的协方差矩阵用 Λ ϵ ( d ) {\bf \Lambda}_{\epsilon}(\bf d) Λϵ(d)表示,利用上述性质,可以证明出如下几条性质:

  • 性质1:估计参数d的克拉美罗界
    Λ ϵ ( d ) − { ▽ x [ γ T ( x ) ] } T J F − 1 ( x ) { ▽ x [ γ T ( x ) ] } ⩾ 0 {\bf \Lambda}_{\epsilon}(\bf d) -\left \{\triangledown_{\bf x}[\gamma^T({\bf x})]\right\}^T{\bf J}_F^{-1}({\bf x})\left \{\triangledown_{\bf x}[\gamma^T({\bf x})]\right\}\geqslant {\bf 0} Λϵ(d){x[γT(x)]}TJF1(x){x[γT(x)]}0

  • 性质2:对上面矩阵形式克拉美罗界中单独元素的拆解
    V a r ( d ϵ i ) ⩾ ∑ k = 1 K ∑ j = 1 K ∂ γ i ( x ) ∂ x k J F k j ( x ) ∂ γ i ( x ) ∂ x j {\rm Var}(d_{{\epsilon}_i}) \geqslant \sum_{k=1}^K \sum_{j=1}^K \frac{\partial \gamma_i({\bf x})}{\partial x_k} J_F^{kj}({\bf x})\frac{\partial \gamma_i({\bf x})}{\partial x_j} Var(dϵi)k=1Kj=1Kxkγi(x)JFkj(x)xjγi(x)

  • 性质3:上述性质在线性模型下可以进一步简化,若有以下线性关系
    γ ( x ) ≜ Γ x \gamma({\bf x})\triangleq {\bf \Gamma}{\bf x} γ(x)Γx

其中 Γ {\bf \Gamma} Γ 是一个 M × K M \times K M×K 的矩阵。若估计量是无偏的,则有
Λ ϵ ( d ) − Γ T J F − 1 ( x ) Γ ⩾ 0 {\bf \Lambda}_{\epsilon}(\bf d) -{\bf \Gamma}^T{\bf J}_F^{-1}({\bf x}){\bf \Gamma}\geqslant {\bf 0} Λϵ(d)ΓTJF1(x)Γ0

5 参考文献

[1] Trees V . Detection, Estimation, and Modulation Theory[M]. Wiley, 1971.


原创性声明:本文属于作者原创性文章,小弟码字辛苦,转载还请注明出处。谢谢~

如果有哪些地方表述的不够得体和清晰,有存在的任何问题,亦或者程序存在任何考虑不周和漏洞,欢迎评论和指正,谢谢各路大佬。

有需要相关技术支持的可咨询QQ:297461921

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值