更新日志:
2020.10.24:发布
1 简介
克拉美罗界用以研究参数估计问题的一套理论。参数估计是现代信号处理领域的一个重头戏,人为观测到的信号往往是物理模型产生的,为了研究信号的产生过程,我们会设计各种各样的数学模型以近似物理模型。这些数学模型往往是由模型的结构和参数组成,若给定了模型的结构,而模型的参数还未知的话,就可以利用观测数据通过各种算法估计这些参数(这就叫后验)。这些估计参数的方法就很多了,可以分成两大类,一类是有偏估计(估计值的期望与待估参数的真值之间有系统误差),一类是无偏估计(估计值的期望与待估参数的真值之间无系统误差)。克拉美罗界只适用于无偏估计,它认为,任何无偏估计量的方差不会低于克拉美罗界,也就是说,设计的参数估计算法再强,给出的无偏估计量的方差不可能低于下界,因此也称其为Cramer-Rao Lower Bounds(CRLB),意为克拉美罗下界。
本篇博文主要研究非随机参数估计的克拉美罗下界,非随机参数(nonrandom parameter)是指参数的值是固定的,不随观测的变化而变化。
一个模型只要给定,估计参数的下界就固定了,所以我们在设计算法时候,设计的结果往往会通过多次试验计算估计的方差,看与下界的距离有多少,就知道算法好不好了。当然,如果是有偏估计的话,那方差完全有可能是低于下界的,但是有偏估计一般就没什么意义了,比如待估计的参数 a = 5 a=5 a=5,然后我每次估计时候都认为是8,那方差就是0了,但是这样的估计就失去意义了,所以这里只考虑无偏估计。
举个简单的例子,现在有一个电压真值为5V的接头,我们希望通过电压表测量这个电压(也就是待估计的非随机参数),但是电压表不准确,测量值老是跳,结果等于这个真值5V加上零均值的高斯白噪声。为了估计电压,我们采用这样的方法:每测得一个值,就认为这是接头的电压了。因此,比如总共测了100次,可以得到100个估计值,这100个估计值可能都接近于5V(如果测量次数接近于无穷的话,那么这些估计值的平均是等于5V的,因为这是个无偏估计方法),但是估计值都各不相等,那么这100个值的方差必然大于克拉美罗界。
那么到底怎么定义克拉美罗界呢?如下。(注意,本博文中加粗的符号表示向量或者矩阵,不加粗的表示标量)
2 克拉美罗界的定义
用向量 x \bf{x} x 表示待估计的参数, z \bf{z} z 表示对参数的测量, x ^ ( z ) \hat{\bf{x}}(\bf{z}) x^(z) 表示根据测量给出的参数估计结果,叫估计子。
无偏估计子
x
^
(
z
)
\hat{\bf{x}}(\bf{z})
x^(z) 给出的结果往往是围绕着参数真值
x
\bf{x}
x 波动,为了描述波动的程度,定义误差的方差,即平均平方误差(mean-square error matrix)为
Λ
ϵ
=
M
S
E
(
x
^
(
z
)
)
≜
E
{
[
x
^
(
z
)
−
x
]
[
x
^
(
z
)
−
x
]
T
}
{\bf \Lambda}_{\epsilon}={\rm MSE}(\hat{\bf{x}}({\bf{z}})) \triangleq {\bf E}\{[\hat{\bf x}({\bf z})-{\bf x}][\hat{\bf x}({\bf z})-{\bf x}] ^T\}
Λϵ=MSE(x^(z))≜E{[x^(z)−x][x^(z)−x]T}
用
p
(
z
∣
x
)
p({\bf z}|{\bf x})
p(z∣x) 表示测量的概率密度函数,定义尺寸为
K
×
K
K \times K
K×K 的Fisher信息矩阵(Fisher’s information matrix ,FIM)的矩阵
J
F
(
x
)
{\bf J}_F ({\bf x})
JF(x) 如下:
J
F
(
x
)
≜
E
{
[
▽
x
ln
p
(
z
∣
x
)
]
[
▽
x
ln
p
(
z
∣
x
)
]
T
}
=
−
E
{
▽
x
[
▽
x
ln
p
(
z
∣
x
)
]
T
}
\begin{aligned} {\bf J}_F ({\bf x}) &\triangleq {\bf E}\{[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})][\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] ^T\} \\ &= -{\bf E}\{\triangledown_{\bf x}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})] ^T\} \end{aligned}
JF(x)≜E{[▽xlnp(z∣x)][▽xlnp(z∣x)]T}=−E{▽x[▽xlnp(z∣x)]T}
其中矩阵
J
F
(
x
)
{\bf J}_F ({\bf x})
JF(x) 内部的每一个元素可以写成
J
F
i
j
(
x
)
≜
E
{
∂
ln
p
(
z
∣
x
)
∂
x
i
∂
ln
p
(
z
∣
x
)
∂
x
j
}
=
−
E
{
∂
2
ln
p
(
z
∣
x
)
∂
x
i
∂
x
j
}
\begin{aligned} {J}_{F_{ij}} ({\bf x}) &\triangleq {\bf E}\{\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_i}\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}\} \\ &= -{\bf E}\{\frac{\partial^2 \ln p({\bf z}|{\bf x})}{\partial x_i \partial x_j}\} \end{aligned}
JFij(x)≜E{∂xi∂lnp(z∣x)∂xj∂lnp(z∣x)}=−E{∂xi∂xj∂2lnp(z∣x)}
那么克拉美罗界具有如下性质:
Λ
ϵ
−
J
F
−
1
(
x
)
⩾
0
{\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1} ({\bf x})\geqslant {\bf 0}
Λϵ−JF−1(x)⩾0
这里 ⩾ \geqslant ⩾ 表示左边的矩阵式子是非负定的。
另外,这一不等式也表明了,左边的矩阵式子所有的子矩阵都是非负定的,其中对角线上的第
i
i
i 元素满足
σ
ϵ
i
2
≜
V
a
r
[
x
^
i
(
z
)
−
x
i
]
⩾
J
F
i
i
(
x
)
\sigma_{\epsilon_i}^2 \triangleq {\rm Var}[\hat{x}_i({\bf z})-x_i]\geqslant J_F^{ii}({\bf x})
σϵi2≜Var[x^i(z)−xi]⩾JFii(x)
当且仅当
x
^
(
z
)
−
x
=
k
(
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
\hat{{\bf x}}({\bf z})-{\bf x}={\bf k}({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]
x^(z)−x=k(x)[▽xlnp(z∣x)]
其中 k ( x ) = J F − 1 ( x ) {\bf k}({\bf x})={\bf J}_F^{-1}({\bf x}) k(x)=JF−1(x)
上面两个不等式子的等号成立。
3 示例
3.1 理论案例
仍然以简介中电压测量为例,接头电压固定为
x
x
x ,即为待估计的量,而电压测量时,测量受到均值为
μ
=
0
\mu=0
μ=0 、方差为
σ
2
\sigma^2
σ2 的加性高斯白噪声
n
n
n 的影响,即
z
=
x
+
n
z=x+n
z=x+n
因此,测量的概率密度函数表示为
p
(
z
∣
x
)
=
1
2
π
σ
exp
[
−
(
z
−
x
)
2
2
σ
2
]
p(z|x)=\frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(z-x)^2}{2\sigma^2}\right]
p(z∣x)=2πσ1exp[−2σ2(z−x)2]
那么该模型的Fisher信息矩阵(在本例中其实是标量不算是矩阵,因此下面没有用粗体)为
J
F
(
x
)
=
−
∂
2
ln
[
p
(
z
∣
x
)
]
∂
x
2
=
∂
2
∂
x
2
(
z
−
x
)
2
2
σ
2
=
1
σ
2
J_F(x)=-\frac{\partial^2 \ln [p(z|x)]}{\partial x^2}=\frac{\partial^2}{\partial x^2}\frac{(z-x)^2}{2\sigma^2}=\frac{1}{\sigma^2}
JF(x)=−∂x2∂2ln[p(z∣x)]=∂x2∂22σ2(z−x)2=σ21
那么克拉美罗下界为
Λ
ϵ
=
M
S
E
(
x
^
(
z
)
)
⩾
σ
2
{\Lambda}_{\epsilon} = {\rm MSE}{(\hat{x}({z}))}\geqslant \sigma^2
Λϵ=MSE(x^(z))⩾σ2
也就是说,设计的算法只要是无偏的,估计子的方差就一定比 σ 2 \sigma^2 σ2 大。
3.2 实验验证
若我们的估计子取为观测,即 x ^ ( z ) = z \hat{x}({z})=z x^(z)=z 。
那么接下来看看该估计子的均值:
E
[
x
^
(
z
)
]
=
∫
−
∞
∞
z
p
(
z
∣
x
)
d
z
=
x
E[\hat{x}(z)]=\int_{-\infty}^{\infty}zp(z|x)dz=x
E[x^(z)]=∫−∞∞zp(z∣x)dz=x
说明该估计子是无偏的,然后计算该估计子的方差
V
a
r
[
x
^
(
z
)
]
=
∫
−
∞
∞
(
z
−
x
)
2
p
(
z
∣
x
)
d
z
=
σ
2
{\rm Var}[\hat{x}(z)]=\int_{-\infty}^{\infty}(z-x)^2p(z|x)dz=\sigma^2
Var[x^(z)]=∫−∞∞(z−x)2p(z∣x)dz=σ2
估计子的方差恰好等于CRB,说明这种估计方法是最好的。
做个简单的实验验证一下,接头电压为5V,然后我们选取噪声的方差分别为 0.5 ~ 5 ,每一个噪声参数,都做10000次重复实验,然后计算这10000次实验给出的估计子的方差,再与克拉美罗下界对比。仿真代码如下,
// A Matlab Code
clear; close all; clc;
x = 5; % 待估计的电压 5V
Times = 10000; % 每个噪声模型下,都做10000次仿真
miu = 0; % 噪声的均值为0
index = 1; % 索引
for sigma = 0.5:0.5:5
x_hat = zeros(Times, 1);
for t = 1:Times
n = normrnd(miu, sigma, 1, 1); % 仿真高斯白噪声
z = x + n; % 观测结果
x_hat(t, 1) = z; % 认为观测的值即为电压值
end
MSE(index, 1) = var(x_hat); % 计算每个方差为sigma的噪声对应的估计子的方差,即为MSE
CRB(index, 1) = sigma^2; % 计算每个方差为sigma的噪声对应的克拉美罗下界
index = index + 1;
end
figure;hold on;
plot(0.5:0.5:5, MSE, 'LineWidth',2, 'Marker', 'o');
plot(0.5:0.5:5, CRB, 'LineWidth',2, 'color', [119, 172, 48]/255);
legend('MSE', 'CRB');
title('估计子的方差与克拉美罗下界的对比');
仿真结果如下图,
实验结果非常直观了,MSE非常接近CRB,与我们的理论是一致的,当然一些偏差是合理的,因为只是进行了10000次实验,难免会有一点点小偏差,如果是无穷次实验,那就绝对一致了。
这是只观测一次的情况下,最优的办法了,所以平时我们基本电压表测出怎样的结果,就认为实际的电压是啥样子的。如果读者有个疑问,我们不是会连续测很多次,然后取平均作为最终的估计值,那这个时候做很多很多次试验,只要每次试验的测量次数足够多,那这些试验的估计子的方差不就非常接近于零了,那怎么会大于CRB呢?其实不然,上面我们算的CRB都是标量的,就是只得到一次结果便给出估计,如果测量次数非常多的话,那CRB就是不是上面这么3.1节这么算的了,读者可以自行尝试一下,也欢迎读者在评论区给出答案哈~
下面的证明如果读者不感冒就可以跳过了,如果想进一步深入研究克拉美罗界的理论的话,建议好好品尝一下。
4 证明
4.1 不等式的证明
因为
x
^
i
(
z
)
\hat{x}_i({\bf z})
x^i(z) 是无偏的,所以有
∫
−
∞
∞
[
x
^
i
(
z
)
−
x
i
]
p
(
z
∣
x
)
d
z
=
0
\int_{-\infty}^{\infty}[\hat{x}_i({\bf z})-x_i]p({\bf z}|{\bf x})d{\bf z}=0
∫−∞∞[x^i(z)−xi]p(z∣x)dz=0
对
x
j
x_j
xj 求偏导,有
−
δ
i
j
∫
−
∞
∞
p
(
z
∣
x
)
d
z
+
∫
−
∞
∞
[
x
^
i
(
z
)
−
x
i
]
∂
p
(
z
∣
x
)
∂
x
j
d
z
=
0
-\delta_{ij}\int_{-\infty}^{\infty}p({\bf z}|{\bf x})d{\bf z}+\int_{-\infty}^{\infty}[\hat{x}_i({\bf z})-x_i]\frac{\partial p({\bf z}|{\bf x})}{\partial x_j}d{\bf z}=0
−δij∫−∞∞p(z∣x)dz+∫−∞∞[x^i(z)−xi]∂xj∂p(z∣x)dz=0
其中
δ
i
j
\delta_{ij}
δij 当
i
=
j
i=j
i=j 时取值1,其他情况取值0。显然上式的第一个积分等于1,而第二个积分式子为
∂
p
(
z
∣
x
)
∂
x
j
=
∂
ln
p
(
z
∣
x
)
∂
x
j
p
(
z
∣
x
)
\frac{\partial p({\bf z}|{\bf x})}{\partial x_j}=\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}p({\bf z}|{\bf x})
∂xj∂p(z∣x)=∂xj∂lnp(z∣x)p(z∣x)
因此可以重新写为
∫
−
∞
∞
{
[
x
^
i
(
z
)
−
x
i
]
p
(
z
∣
x
)
}
{
p
(
z
∣
x
)
∂
ln
p
(
z
∣
x
)
∂
x
j
}
d
z
=
δ
i
j
\int_{-\infty}^{\infty}\left\{[\hat{x}_i({\bf z})-x_i]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}\frac{\partial \ln p({\bf z}|{\bf x})}{\partial x_j}\right\}d{\bf z}=\delta_{ij}
∫−∞∞{[x^i(z)−xi]p(z∣x)}{p(z∣x)∂xj∂lnp(z∣x)}dz=δij
或者写成矩阵的形式为,其中
I
{\bf I}
I 表示单位阵
∫
−
∞
∞
{
[
x
^
(
z
)
−
x
]
p
(
z
∣
x
)
}
{
p
(
z
∣
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
T
}
d
z
=
I
\int_{-\infty}^{\infty}\left\{[\hat{\bf x}({\bf z})-{\bf x}]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T\right\}d{\bf z}={\bf I}
∫−∞∞{[x^(z)−x]p(z∣x)}{p(z∣x)[▽xlnp(z∣x)]T}dz=I
为了用上Schwarz不等式,定义两个任意的
K
×
1
K \times 1
K×1 大小的向量
b
1
{\bf b}_1
b1 和
b
2
{\bf b}_2
b2 ,且这两个向量与测量
z
{\bf z}
z 无关,现在,对上面的等式左乘
b
1
T
{\bf b}_1^T
b1T ,右乘
b
2
{\bf b}_2
b2 ,得到
∫
−
∞
∞
{
b
1
T
[
x
^
(
z
)
−
x
]
p
(
z
∣
x
)
}
{
p
(
z
∣
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
T
b
2
}
d
z
=
b
1
T
b
2
\int_{-\infty}^{\infty}\left\{{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]\sqrt{p({\bf z}|{\bf x})}\right\}\left\{ \sqrt{p({\bf z}|{\bf x})}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2\right\}d{\bf z}={\bf b}_1^T{\bf b}_2
∫−∞∞{b1T[x^(z)−x]p(z∣x)}{p(z∣x)[▽xlnp(z∣x)]Tb2}dz=b1Tb2
这样以来,上面式子花括号中的量都变成标量了,利用Schwarz不等式,可以得到
(
b
1
T
b
2
)
2
⩽
∫
−
∞
∞
b
1
T
[
x
^
(
z
)
−
x
]
[
x
^
(
z
)
−
x
]
T
b
1
p
(
z
∣
x
)
d
z
⋅
∫
−
∞
∞
b
2
T
[
▽
x
ln
p
(
z
∣
x
)
]
[
▽
x
ln
p
(
z
∣
x
)
]
T
b
2
p
(
z
∣
x
)
d
z
({\bf b}_1^T{\bf b}_2)^2 \leqslant \int_{-\infty}^{\infty}{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}][\hat{\bf x}({\bf z})-{\bf x}]^T {\bf b}_1 {p({\bf z}|{\bf x})} d{\bf z}\\ \cdot \int_{-\infty}^{\infty} {\bf b}_2^T [\triangledown_{\bf x}\ln p({\bf z}|{\bf x})][\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2 {p({\bf z}|{\bf x})}d{\bf z}
(b1Tb2)2⩽∫−∞∞b1T[x^(z)−x][x^(z)−x]Tb1p(z∣x)dz⋅∫−∞∞b2T[▽xlnp(z∣x)][▽xlnp(z∣x)]Tb2p(z∣x)dz
等号成立的条件是当且仅当
b
1
T
[
x
^
(
z
)
−
x
]
=
C
(
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
T
b
2
{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2
b1T[x^(z)−x]=C(x)[▽xlnp(z∣x)]Tb2
其中
C
(
x
)
C({\bf x})
C(x) 表示一个只与
x
{\bf x}
x 有关、与
z
{\bf z}
z 无关的量。如果把这里的两个积分公式分别换成
Λ
ϵ
{\bf \Lambda}_{\epsilon}
Λϵ 和
J
F
(
x
)
{\bf J}_F({\bf x})
JF(x) ,那么这个式子就可以简化为
(
b
1
T
b
2
)
2
⩽
[
b
1
T
Λ
ϵ
b
1
]
⋅
[
b
2
T
J
F
(
x
)
b
2
]
({\bf b}_1^T{\bf b}_2)^2 \leqslant [{\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1] \cdot [{\bf b}_2^T {\bf J}_F({\bf x}){\bf b}_2]
(b1Tb2)2⩽[b1TΛϵb1]⋅[b2TJF(x)b2]
考虑到以上式子中
b
1
{\bf b}_1
b1 和
b
2
{\bf b}_2
b2 都是任意选取的,那么可以令
b
2
=
J
F
−
1
(
x
)
b
1
{\bf b}_2={\bf J}_F^{-1}({\bf x}){\bf b}_1
b2=JF−1(x)b1
这样上一个不等式就可以写成
[
b
1
T
Λ
ϵ
b
1
]
⋅
[
b
1
T
J
F
−
1
(
A
)
b
1
]
⩾
[
b
1
T
J
F
−
1
(
x
)
b
1
]
2
[{\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1] \cdot [{\bf b}_1^T {\bf J}_F^{-1}({\bf A}){\bf b}_1] \geqslant [{\bf b}_1^T {\bf J}_F^{-1}({\bf x}){\bf b}_1] ^2
[b1TΛϵb1]⋅[b1TJF−1(A)b1]⩾[b1TJF−1(x)b1]2
于是就可以简化为
b
1
T
Λ
ϵ
b
1
⩾
b
1
T
J
F
−
1
(
x
)
b
1
{\bf b}_1^T{\bf \Lambda}_{\epsilon} {\bf b}_1 \geqslant {\bf b}_1^T {\bf J}_F^{-1}({\bf x}){\bf b}_1
b1TΛϵb1⩾b1TJF−1(x)b1
或者写成
b
1
T
[
Λ
ϵ
−
J
F
−
1
(
x
)
]
b
1
⩾
0
{\bf b}_1^T[{\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1}({\bf x})] {\bf b}_1 \geqslant 0
b1T[Λϵ−JF−1(x)]b1⩾0
由于前面已经说明了
b
1
{\bf b}_1
b1 的任意性,在任意选取
b
1
{\bf b}_1
b1 时上面这一不等式都必然成立,因此
Λ
ϵ
−
J
F
−
1
(
x
)
⩾
0
{\bf \Lambda}_{\epsilon}-{\bf J}_F^{-1}({\bf x}) \geqslant {\bf 0}
Λϵ−JF−1(x)⩾0
这里的 ⩾ \geqslant ⩾ 仍然表示左边的矩阵式子是非负定的。
4.2 等号成立条件
再次利用 4.1 小节中的两个式子(直接摘自上小节),第二个式子为等号成立的条件
b
2
=
J
F
−
1
(
x
)
b
1
{\bf b}_2={\bf J}_F^{-1}({\bf x}){\bf b}_1
b2=JF−1(x)b1
b 1 T [ x ^ ( z ) − x ] = C ( x ) [ ▽ x ln p ( z ∣ x ) ] T b 2 {\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf b}_2 b1T[x^(z)−x]=C(x)[▽xlnp(z∣x)]Tb2
把第一个式子代入到第二个式子,则等号成立的条件变为
b
1
T
[
x
^
(
z
)
−
x
]
=
C
(
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
T
J
F
−
1
(
x
)
b
1
{\bf b}_1^T[\hat{\bf x}({\bf z})-{\bf x}]=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf J}_F^{-1}({\bf x}){\bf b}_1
b1T[x^(z)−x]=C(x)[▽xlnp(z∣x)]TJF−1(x)b1
考虑到
b
1
{\bf b}_1
b1 的任意性,则可以进一步简化为
[
x
^
(
z
)
−
x
]
T
=
C
(
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
T
J
F
−
1
(
x
)
[\hat{\bf x}({\bf z})-{\bf x}]^T=C({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T{\bf J}_F^{-1}({\bf x})
[x^(z)−x]T=C(x)[▽xlnp(z∣x)]TJF−1(x)
重写该式子为
[
▽
x
ln
p
(
z
∣
x
)
]
T
=
[
x
^
(
z
)
−
x
]
T
J
F
(
x
)
C
(
x
)
[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T=[\hat{\bf x}({\bf z})-{\bf x}]^T\frac{{\bf J}_F({\bf x})}{C({\bf x})}
[▽xlnp(z∣x)]T=[x^(z)−x]TC(x)JF(x)
式子两边同时对
x
{\bf x}
x 求偏导,得到
▽
x
[
▽
x
ln
p
(
z
∣
x
)
]
T
=
−
I
J
F
(
x
)
C
(
x
)
+
[
x
^
(
z
)
−
x
]
T
▽
x
[
J
F
(
x
)
C
(
x
)
]
\triangledown_{\bf x}[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]^T=-{\bf I}\frac{{\bf J}_F({\bf x})}{C({\bf x})}+[\hat{\bf x}({\bf z})-{\bf x}]^T\triangledown_{\bf x}\left[ \frac{{\bf J}_F({\bf x})}{C({\bf x})} \right]
▽x[▽xlnp(z∣x)]T=−IC(x)JF(x)+[x^(z)−x]T▽x[C(x)JF(x)]
这样,对等式两边同时乘以 -1,然后同时取期望,由于估计量是无偏的,则等号右边的第二项的期望为 0 ,那么可以得到
J
F
(
x
)
=
1
C
(
x
)
J
F
(
x
)
{\bf J}_F({\bf x})=\frac{1}{C({\bf x})}{\bf J}_F({\bf x})
JF(x)=C(x)1JF(x)
因此等号成立的条件对应于
C
(
x
)
=
1
C({\bf x})=1
C(x)=1 ,于是等号成立的条件等价于
x
^
(
z
)
−
x
=
J
F
−
1
(
x
)
[
▽
x
ln
p
(
z
∣
x
)
]
\hat{\bf x}({\bf z})-{\bf x}={\bf J}_F^{-1}({\bf x})[\triangledown_{\bf x}\ln p({\bf z}|{\bf x})]
x^(z)−x=JF−1(x)[▽xlnp(z∣x)]
或者写成
▽
x
ln
p
(
z
∣
x
)
=
J
F
(
x
)
[
x
^
(
z
)
−
x
]
\triangledown_{\bf x}\ln p({\bf z}|{\bf x})={\bf J}_F({\bf x})[\hat{\bf x}({\bf z})-{\bf x}]
▽xlnp(z∣x)=JF(x)[x^(z)−x]
这就是克拉美罗界不等式中等号成立的条件了,当无偏估计子满足这一条件时,该估计子的方差达到克拉美罗界,便也是最好的了。
4.3 补充性质
有些时候,我们需要估计的是以上所述的
K
×
1
K \times 1
K×1 大小的参数向量
x
{\bf x}
x 的函数,而并非
x
{\bf x}
x 本身。假设要估计的量是
d
=
γ
(
x
)
{\bf d}=\bf \gamma(\bf x)
d=γ(x) ,这里
d
=
[
d
1
,
d
2
,
.
.
.
,
d
M
]
T
{\bf d}=[d_1,d_2,...,d_M]^T
d=[d1,d2,...,dM]T。
M
M
M 和
K
K
K 并没有关系,方程可能是非线性的。估计误差表示为
d
^
(
z
)
−
γ
(
x
)
≜
d
ϵ
\hat{\bf d}({\bf z})-\gamma(\bf x) \triangleq {\bf d}_{\epsilon}
d^(z)−γ(x)≜dϵ
如果假设估计是无偏的,估计误差的协方差矩阵用 Λ ϵ ( d ) {\bf \Lambda}_{\epsilon}(\bf d) Λϵ(d)表示,利用上述性质,可以证明出如下几条性质:
-
性质1:估计参数d的克拉美罗界
Λ ϵ ( d ) − { ▽ x [ γ T ( x ) ] } T J F − 1 ( x ) { ▽ x [ γ T ( x ) ] } ⩾ 0 {\bf \Lambda}_{\epsilon}(\bf d) -\left \{\triangledown_{\bf x}[\gamma^T({\bf x})]\right\}^T{\bf J}_F^{-1}({\bf x})\left \{\triangledown_{\bf x}[\gamma^T({\bf x})]\right\}\geqslant {\bf 0} Λϵ(d)−{▽x[γT(x)]}TJF−1(x){▽x[γT(x)]}⩾0 -
性质2:对上面矩阵形式克拉美罗界中单独元素的拆解
V a r ( d ϵ i ) ⩾ ∑ k = 1 K ∑ j = 1 K ∂ γ i ( x ) ∂ x k J F k j ( x ) ∂ γ i ( x ) ∂ x j {\rm Var}(d_{{\epsilon}_i}) \geqslant \sum_{k=1}^K \sum_{j=1}^K \frac{\partial \gamma_i({\bf x})}{\partial x_k} J_F^{kj}({\bf x})\frac{\partial \gamma_i({\bf x})}{\partial x_j} Var(dϵi)⩾k=1∑Kj=1∑K∂xk∂γi(x)JFkj(x)∂xj∂γi(x) -
性质3:上述性质在线性模型下可以进一步简化,若有以下线性关系
γ ( x ) ≜ Γ x \gamma({\bf x})\triangleq {\bf \Gamma}{\bf x} γ(x)≜Γx
其中
Γ
{\bf \Gamma}
Γ 是一个
M
×
K
M \times K
M×K 的矩阵。若估计量是无偏的,则有
Λ
ϵ
(
d
)
−
Γ
T
J
F
−
1
(
x
)
Γ
⩾
0
{\bf \Lambda}_{\epsilon}(\bf d) -{\bf \Gamma}^T{\bf J}_F^{-1}({\bf x}){\bf \Gamma}\geqslant {\bf 0}
Λϵ(d)−ΓTJF−1(x)Γ⩾0
5 参考文献
[1] Trees V . Detection, Estimation, and Modulation Theory[M]. Wiley, 1971.
原创性声明:本文属于作者原创性文章,小弟码字辛苦,转载还请注明出处。谢谢~
如果有哪些地方表述的不够得体和清晰,有存在的任何问题,亦或者程序存在任何考虑不周和漏洞,欢迎评论和指正,谢谢各路大佬。
有需要相关技术支持的可咨询QQ:297461921