【阅读笔记】Heterogeneity for the Win: One-Shot Federated Clustering

背景介绍

对于联邦学习我们常常考虑的是保护隐私的分布式有监督学习任务的训练。该文章考虑的是联邦学习怎么用于无监督学习之一的聚类问题。该文章研究的主要问题是每个client由于数据局限性,只有部分的类别数据,在这样数据异构(Non-IID)的情况下如何进行高效的聚类。此外,该方法也可以帮助一些监督学习联邦学习,特别是基于聚类的个性化联邦学习算法。
该论文提出的方法最大的特点是one-shot,client只需要与server进行一次数据传输即可。具有较强的鲁棒性并能减少开销。此外,该论文还发现数据异构(Non-IID)有利于聚类任务的性能,也就是说对于很多监督学习来说的Non-IID问题反而促进了聚类任务的完成。

相关工作

集中式聚类

最经典的K-means算法(since 1982),因为简单高效经久不衰。随机初始化k个聚类中心,再根据每个点到聚类中心距离进行归类,更新聚类中心为类中所有点的平均值。
之后有更多研究关注更好的初始化聚类中心,能够达到更快的收敛速度。
本文中本地的聚类过程就是采用一个更高效的初始化中心的K-means算法

分布式聚类方法

文中也列出了有关注通信效率并效果好的聚类方法。但他们没有关注到联邦学习领域中数据异构的问题,及每个分布点的数据包含的类别数量不是一样的

联邦聚类

过去的联邦聚类都是关注于怎么划分Client,是个性化联邦学习的上游任务。本文主要关注的是如何对数据本身进行聚类。当然本文也验证了其方法在划分client中的有效性。

K-FED的具体设计

对聚类问题的建模采用一个矩阵优化的损失函数
损失函数
其中A矩阵是聚类结果, A ∈ R n × d A\in R^{n \times d} ARn×d, 为n个聚类中心的表示,d为数据点的维度.
Local Clustering
在这里插入图片描述

实验

数据集构造

按照不同高斯分布生成数据点,每个client只有部分高斯分布的结果
在这里插入图片描述

异构性带来的好处

在这里插入图片描述
k‘越小,相比于最大k的聚类结果,离集中式聚类结果的差距越小

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
一次性联邦聚类是一种利用异质性的方法,以获得胜利的策略。在传统的聚类任务中,数据通常集中在一个中央位置进行处理,这存在着数据隐私的风险。而一次性联邦聚类的方法通过将数据分布在不同的本地设备上进行处理,从而能够更好地保护数据隐私。 使用一次性联邦聚类的一个主要优势就是能够处理异构数据。在现实世界中,我们常常面对来自不同来源、结构和属性的数据。传统的聚类算法通常只适用于特定类型的数据,这限制了其广泛的应用。而一次性联邦聚类能够处理来自多个设备的异构数据,并在保持数据本地的同时进行聚类分析。通过融合来自不同设备的数据特征,一次性联邦聚类可以提供更全面、准确的聚类结果。 除了处理异构数据的能力,一次性联邦聚类还具有更好的数据隐私保护。在一次性联邦聚类中,本地设备上的数据不需要传输到中央位置,而是在本地进行处理。这种本地计算的方式可以降低数据隐私泄露的风险,保护用户的个人隐私。同时,一次性联邦聚类还可以采用加密和隐私保护技术,如差分隐私,进一步增强数据隐私保护。 总而言之,一次性联邦聚类是一种利用异质性的策略,能够充分利用来自多个设备的数据特征。它既可以处理来自不同来源的异构数据,又能够保护数据隐私。在当前数据驱动的社会中,一次性联邦聚类为我们提供了一种强大的工具,可以在数据分析和隐私保护方面取得重大的进展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值