【论文阅读笔记】Large Language Models AreZero-Shot Time Series Forecasters

本文探讨了大型语言模型(LLMs)如何应用于时间序列预测,通过将时间序列转化为数字串,利用LLMs的序列建模能力进行预测。作者提出的方法LLMTIME2无需微调,只需对数值进行适当预处理,就能实现预测。实验结果显示,这种方法在Darts、Monash预测归档和Informer数据集上展现出竞争力,甚至超越了一些专门的时间序列模型。
摘要由CSDN通过智能技术生成

背景介绍

  • 时间序列预测与其他序列建模问题(如文本、音频或视频)类似,但有两个特别的挑战。不同于视频或音频通常具有一致的输入规模和采样率,聚合的时间序列数据集通常包含来自截然不同来源的序列,有时还包含缺失值。
  • 时间序列预测的常见应用,如天气或金融数据,需要从只含有一小部分可能信息的观察结果中进行外推,这使得精确的点预测几乎不可能,并使得不确定性估计尤为重要。
  • 尽管大规模预训练已成为训练大型视觉和文本神经网络的关键元素,使得性能可以直接随数据可用性扩展,但预训练通常不用于时间序列建模,在这一领域中,没有共识的无监督学习目标,且大型、统一的预训练数据集并不容易获得。
  • 因此,在流行的基准测试中,简单的时间序列方法(如ARIMA和线性模型)通常会胜过深度学习方法。
  • 在本文中,我们展示了大型语言模型(LLM)如何自然地弥合传统方法的简单偏见与现代深度学习的复杂表征学习和生成能力之间的差距。
  • 我们引入了一种极其简单的方法LLMTIME2,将预训练的LLMs应用于连续时间序列预测问题,如图1所示。该方法的核心是将时间序列表示为数字串,并将时间序列预测视为文本中的下一个标记预测,从而开启了使用大型预训练模型的可能性。

相关工作

时间序列数据通常与语言模型数据的形式非常相似,都是由一系列的序列构成。但时间序列中的 是数值型数据。由于语言模型旨在表示序列上复杂的概率分布,从理论上讲,它们非常适合于时间序列建模。然而,在实践中,将语言模型应用于数值数据时会受到数字标记化(tokenizing)细节的限制。字节对编码(Byte Pair Encoding, BPE)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值