2020:MUTANT: A Training Paradigm for Out-of-Distribution Generalizationin Visual Question Answering

摘要

        对域外测试样本的评估已经成为泛化的一个重要指标,本文,我们提出MUTANT,一种训练范式,将模型暴露于感知上相似但语义不同的输入中,以改进泛化,如VQA-CP挑战。在这个范式下,模型利用一致性约束的训练目标来理解输入的语义变化对输出的影响。与现有VQA-CP方法不同,MUTANT并不依赖关于训练的性质和测试答案分布的知识。MUTANT在VQA-CP上实现了10.57%的提高,我们的工作为使用语义输入突变为OOD泛化开辟了途径。

一、介绍

       每个数据集都包含偏见,归纳偏差是机器学习算法工作的必要条件。然而偏差有一个对于泛化有用(正偏见)的组件,和由于假相关性(负偏见)的一个组件。我们使用"positive bias"表示执行一项任务必要的相关性--如对于“What sports is”问题的答案与一个运动名相关。将"negative bias"用在可能从数据中学到的假相关性--如对于“What sports is”问题的答案是"tennis"。OOD泛化的目标是在学习执行任务的同时减轻负偏见。LMH通过惩罚不看图像而回答的例子移除所有的偏见。

        我们提出一种注重增加正偏见和减轻负偏见的方法,以解决OOD的泛化问题。我们的方法使输入突变,以将VQA模型暴露在感知上相似但语义不同的样本中。直觉是隐式的允许模型理解输入中导致答案变化的关键变化。如图1所示,图像和问题上的突变都导致了答案的变化,这两种突变都没有很大改变输入,回答问题所需的推理类型也没有改变。

         我们提出了一种问题类型的暴露框架,教模型,尽管这些语言先验可能存在于训练数据中,其它运动也可以回答这些问题,从而减轻负面偏见。这与专注于使用数据增强减轻语言偏见的方法(CSS)相反。我们的方法使用成对训练协议,以确保原始样本和突变样本的答案预测的一致性。我们的模型包括一个投影层,投影了跨模态特征和学习流形的真实答案,并使用噪声对比估计损失来最小化两个向量间的距离。

        我们的贡献如下:(1)引入训练VQA模型的突变体范式和利用输入图像或问题的语义转换的样本生成机制,以实现OOD泛化。(2)除了传统的分类任务外,我们还制定了一个新的训练目标,使用跨模态特征的投影和答案嵌入在共享投影流形上的投影,以预测正确的答案。(3)我们的成对一致性损失作为一种正则化,试图使地面真实答案向量之间的距离更接近一对原始和突变输入的预测答案向量之间的距离。(4)大量的实验和分析表明了我们的方法在VQACP数据集上的优势,并建立了69.52%的新水平,提高了10.57%.

二、MUTANT

        我们将开放域VQA问题作为一个多分类问题。

2.1 突变的概念

        有三种转换创建突变输入,添加、删除、或替换。对于图像突变,对应于对象的添加或删除,改变对象的属性,如颜色、纹理、和照明条件。问题突变可以通过添加一个负面词(no,not等),掩盖关键

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值