标题:The landscape of immune cell infiltration and its clinical implications of pancreatic ductal adenocarcinoma
数据集:
GEO:GSE102238, GSE21501, GSE28735,GSE57495, GSE62452,GSE71729, GSE78229, GSE85916;
ICGC :ICGC-AU 和 ICGC-CA,
ArrayExpress :E-MTAB-6134 和 MTAB 2780
TCGA的数据:
cBioportal数据库
分析的流程
分析免疫浸润的方法,那就不得不提CIBERSORT,下面是该文章分析流程:
大概结果内容
首先就是利用CIBERSORT软件【参考文章学习:肿瘤免疫细胞浸润与临床相关性分析】分析PDAC组织和para-PDAC组织之间的免疫细胞浸润。作者观察到PDAC中M0巨噬细胞和活化树突状细胞的水平显著升高(图2A),然而,与para-PDAC相比,PDAC中naive B细胞水平显著降低(图2B)。在其他免疫细胞水平方面,PDAC和para-PDAC之间没有显著差异。为了评估M0巨噬细胞、活化的树突状细胞和初发B细胞是否为PDAC的独立预测因子,作者进行了logistic回归,并通过1000-fold bootstrapping进行内部验证。发现M0巨噬细胞和活化的树突状细胞都是区分PDAC和para-PDAC的独立因素。
为了评估肿瘤浸润免疫细胞的预后意义,830个PDAC样本随机分为一个训练队列(N = 581)和一个验证队列(N = 249)。训练集进行单因素COX回归分析。
作者观察到幼稚B细胞(P = 0.008)、调节性T细胞(P = 0.003)、静息肥大细胞(P = 0.003)和记忆性静息CD4 T细胞(P = 0.043)的存在与死亡风险降低显著相关。然而,M0巨噬细胞(P = 0.002)、gamma δ T细胞(P<0.001),初发CD4 T细胞(P <0.001)与死亡风险增加显著相关。
Schoenfeld残差检验表明,这些变量与时间无关。
然后构建了一个多元Cox回归模型,并确定只有M0巨噬细胞、γ - δ T细胞和初发CD4 T细胞是独立的生存预测因子。观察到Kaplan-Meier曲线明显不同,免疫评分不大于0.4的患者生存期明显长于免疫评分大于0.4的患者生存期。此外,为了比较TNM分期和免疫评分的预后意义,计算了Harrell的一致性指数。观察到免疫评分在训练组和验证组均显著优于TNM期。
最后,作者利用GSEA来识别调节免疫细胞的潜在目标。