抽象代数笔记

群、环、域

群的定义

半群
  • 满足结合律
含幺半群
  • 满足结合律
  • 有单位元
  • 满足结合律
  • 有单位元
  • 有逆元
Abel群(可换群)
  • 满足结合律
  • 有单位元
  • 有逆元
  • 满足交换律
关系

半群 → \rightarrow 含幺半群 → \rightarrow → \rightarrow Abel群

举例
  • 群:(Z,+)
  • Abel群:(Q,+),(R,+),(C,+)

群的阶

群G的元素个数 |G| 称为群G的阶

群的运算

  • 可换群中的运算称为加法,可换群又叫加群
  • 加群的单位元叫零元,逆元叫负元
  • 当ab=ba时,(ab)n=anbn

单位元

若存在eL=eR=e,单位元唯一

证明:(证 eL=eLeR=eR)
设有e1,e2,则e1=e1e2=e2

逆元

  • 若存在aL-1=aR-1,则aL-1=aR-1=a-1,且逆元唯一

    证明:aL-1=aL-1(aaR-1)=aR-1
    ∃ \exists a1-1,a2-1,则a1-1=a1-1aa2-1=a2-1

  • 性质
    • (a-1)-1=a
    • a,b可逆,则ab可逆,(ab)-1=b-1a-1
    • a可逆则an可逆,(an)-1=(a-1)n=a-n

例题

半群(G, ⋅ \cdot )是群的充要条件:
1.G有左单位元eL ∀ \forall a ∈ \in G,eLa=a
2. ∀ \forall a ∈ \in G,有左逆元a-1,a-1a=eL

证明
①证左逆元也是右逆元
aa-1=eLaa-1=(a-1)-1a-1aa-1=(a-1)-1eLa-1=(a-1)-1a-1=eL
②证左单位元也是右单位元:
∀ \forall a ∈ \in G,aeL=a(a-1a)=(aa-1)a=eLa
∵ \because eL为单位元
∴ \therefore a-1为逆元


子群

表示

子群:S ≤ \leq G 真子群:S<G

子群运算

A,B为G的非空子集,g ∈ \in G

AB={ab | a ∈ \in A,b ∈ \in B}
A-1={a-1 | a ∈ \in A}
gA={ga | g ∈ \in A}

平凡子群

单位子群{e}和群自身为所有群都有的子群,这两个群称为平凡子群
Δ \Delta Δ.单群:只有两个子群,单位子群和自身

几个命题

  • S ≤ \leq G    ⟺    \iff ∀ \forall a,b ∈ \in S,a-1 ∈ \in S    ⟺    \iff ∀ \forall a,b ∈ \in S,ab-1 ∈ \in S

证明:(i) ⇒ \Rightarrow (ii) 由子群定义可知
(ii) ⇒ \Rightarrow (iii) ∀ \forall a,b ∈ \in S,b-1 ∈ \in S   ∴ \therefore ab-1 ∈ \in S
(iii) ⇒ \Rightarrow (i) aa-1=e ∈ \in S(单位元),ea-1=a-1 ∈ \in S(逆元)
由b-1 ∈ \in S,ab=a(b-1)-1 ∈ \in S  运算对S封闭

  • H ≤ \leq G,则H的单位元为G的单位元
  • H1,H2 ≤ \leq G ⇒ \Rightarrow H1 ⋂ \bigcap H2 ≤ \leq G
  • H1,H2 ≤ \leq G,则H1 ⋃ \bigcup H2 ≤ \leq G    ⟺    \iff H1 ⊆ \subseteq H2或H2 ⊆ \subseteq H1
  • H1,H2 ≤ \leq G,则H1H2 ≤ \leq G    ⟺    \iff H1H2=H2H1

证明 ⇒ \Rightarrow ∀ \forall ab ∈ \in H1H2,(ab)-1 ∈ \in H1H2
设(ab)-1=a1b1
∴ \therefore ab=(a1b1)-1=b1-1a1-1 ∈ \in H2H1
∴ \therefore H1H2 ⊆ \subseteq H2H1
同理可得H2H1 ⊆ \subseteq H1H2
∴ \therefore H1H2=H2H1
⇐ \Leftarrow ∀ \forall a1b1,a2b2,(a1b1)(a2b2)-1
= a 1 b 1 b 2 − 1 a 2 − 1 a _ { 1 } b _ { 1 } b _ { 2 } ^ { - 1 } a _ { 2 } ^ { - 1 } a1b1b21a21= a 1 b ′ a 2 − 1 a _ { 1 } b'a _ { 2 } ^ { - 1 } a1ba21= a 1 a ′ b ′ ′ = a ′ ′ b ′ ′ a _ { 1 } a' b''=a''b'' a1ab=ab
∴ \therefore H 1 H 2 H_{1}H_{2} H1H2 ≤ \leq G

元素的阶

  • a ∈ \in G,使an=e成立的最小正整数n为a的阶,记o(a)
    Δ . o ( e ) = 1 \Delta. o(e)=1 Δ.o(e)=1
  • a ∈ \in G,则am=1    ⟺    \iff o(a) | m

    ⇒ \Rightarrow :设 o ( a ) = n , 则 m = p n + r , 0 ≤ r < n o ( a ) = n ,则 m = p n + r , 0 \leq r < n o(a)=n,m=pn+r,0r<n
    ∴ a m = a p n + r = a r = 1 \therefore a ^ { m } = a ^ { p n + r } = a ^ { r } = 1 am=apn+r=ar=1
    ∵ n 是 使 a m = 1 \because n是使 a ^ { m } = 1 n使am=1的最小正整数
    ∴ r = 0 即 m = p n \therefore r = 0 \quad 即m = p n \quad r=0m=pn
    ∴ n ∣ m \therefore n|m nm
    ⇐ : n = o ( a ) ∣ m ⇒ m = k n ⇒ a m = a k n = ( a n ) k = 1 \Leftarrow: n = o ( a ) | m \Rightarrow m = k n \Rightarrow a ^ { m } = a ^ { k n } = \left( a ^ { n } \right) ^ { k } = 1 :n=o(a)mm=knam=akn=(an)k=1

  • 有限群每一个元素的阶都有限
  • G为群, a , b ∈ G , o ( a ) = m , o ( b ) = n , 若 ( m , n ) = 1 , a b = b a , 则 o ( a b ) = m n a , b \in G ,o ( a ) = m , o ( b ) = n,若 ( m , n ) = 1 ,a b = b a,则o ( a b ) = m n a,bG,o(a)=m,o(b)=n(m,n)=1,ab=ba,o(ab)=mn

    证明:设 o ( a b ) = k o ( a b ) = k o(ab)=k
    ∵ ( a b ) m n = a m n b m n = 1 \because ( a b ) ^ { m n } = a ^ { m n } b ^ { m n } = 1 (ab)mn=amnbmn=1
    ∴ k ∣ m n \therefore k | m n kmn
    ∴ ( a b ) k m = b k m = 1 ∴ n ∣ k m \therefore ( a b ) ^ { k m } = b ^ { k m } = 1 \therefore n | k m (ab)km=bkm=1nkm
    ∵ ( n , m ) = 1 ∴ n ∣ k \because ( n , m ) = 1 \quad \therefore n | k (n,m)=1nk
    同理 m ∣ k ∴ n m ∣ k m | k \quad \therefore n m | k mknmk
    ∴ o ( a b ) = k = m n \therefore o ( a b ) = k = m n o(ab)=k=mn

例题

  • H ⩽ G ⇔ ∀ a , b ∈ H , a b ∈ H H \leqslant G \Leftrightarrow \forall a , b \in H , a b \in H HGa,bH,abH

    ⇒ \Rightarrow :由定义可知
    ⇐ : ∀ a , b ∈ H , a b ∈ H ⇒ a H = H \Leftarrow: \forall a , b \in H , a b \in H \Rightarrow a H = H :a,bH,abHaH=H
    ∴ \therefore H为半群
    ∵ \because G中消去律成立
    ∴ \therefore H中消去律也成立
    ∴ \therefore H是群

  • G是偶数阶群,证明G中存在二阶元

    先证大于2的元素个数为偶数个
    o ( a ) = n ≥ 3 o(a)=n\geq 3 o(a)=n3,则 o ( a − 1 ) = n o(a^{-1})=n o(a1)=n,且 a − 1 ≠ a a^{-1}\neq a a1=a
    ∵ \because 有一个单位元,G有偶数个元素
    ∴ \therefore 至少有一个二阶元

  • ∀ a , b ∈ G , o ( a b ) = o ( b a ) \forall a , b \in G , o(ab) = o ( b a ) a,bG,o(ab)=o(ba)

    证明:设 o ( a b ) = n o( a b ) = n \quad o(ab)=n ( a b ) n = e ( ab ) ^ { n } = e (ab)n=e
    ( a b ) n = a ( b a ) ⋯ ( b a ) ⏟ n − 1 = a ( b a ) n − 1 b = e ( a b ) ^ { n } = \underbrace { a ( b a ) \cdots ( b a ) } _ { n - 1 } = a ( b a ) ^ { n - 1 } b = e (ab)n=n1 a(ba)(ba)=a(ba)n1b=e
    ∴ b ( b a ) n = b , ( b a ) n b = b \therefore b( b a ) ^ { n}=b,( b a ) ^ { n}b=b b(ba)n=b,(ba)nb=b
    ∴ ( b a ) n = e \therefore ( b a ) ^ { n } = e (ba)n=e
    ∴ o ( a b ) ∣ o ( b a ) \therefore o ( ab ) | o ( b a ) \quad o(ab)o(ba)同理 o ( b a ) ∣ o ( a b ) o ( ba ) | o ( ab ) \quad o(ba)o(ab)
    ∴ o ( a b ) = o ( b a ) \therefore o ( a b ) = o ( b a ) o(ab)=o(ba)

  • a ∈ G , o ( a ) = n , 则 o ( a m ) = n / ( m , n ) a\in G,o(a)=n,则o(a^{m})=n/(m,n) aG,o(a)=n,o(am)=n/(m,n)

    证能互相整除
    o ( a m ) = k , ( m , n ) = d o\left( a ^ { m } \right) = k , \quad ( m , n ) = d o(am)=k,(m,n)=d
    m = r d , n = s d , n / ( m , n ) = s m = r d , n = s d , \quad n / ( m , n ) = s m=rd,n=sd,n/(m,n)=s
    ①. ( a m ) s = a m s = a n r = e ∴ k ∣ s ( a ^ { m } ) ^ { s } = a ^ { m s } = a ^ { n r } = e \quad \therefore k | s (am)s=ams=anr=eks
    ②. ( a m ) k = a m k = e ∴ n ∣ m k \left( a ^ { m } \right) ^ { k } = a ^ { m k } = e \quad \therefore n | m k (am)k=amk=enmk
    ∴ s∣k ⁡ ∴ ( r , s ) = 1 ∴ s ∣ k \therefore \operatorname { s | k } \quad\therefore ( r , s ) = 1 \quad \therefore s | k sk(r,s)=1sk
    ∴ k = s \therefore k = s k=s


生成元,同构

生成元

a ∈ G , a \in G ,\quad aG, H = { a k ∣ k ∈ Z } H = \left\{ a ^ { k } | k \in Z \right\} H={akkZ},此子群为由 a a a 生成的循环子群 < a > <a> <a>,则 a a a为H的生成元

同构

对群 ( G , ⋅ ) , ( G ′ , ∘ ) ( G , \cdot ) , \quad \left( G ^ { \prime } , \circ \right) (G,),(G,),若存在双射 f f f从G到G’, f ( a ⋅ b ) = f ( a ) ∘ f ( b ) ( ∀ a , b ∈ G ) f ( a \cdot b ) = f ( a ) \circ f ( b ) ( \forall a , b \in G ) f(ab)=f(a)f(b)(a,bG)
则称 f f f为G的同构

命题

  • ( Z , + ) \left( Z, + \right) (Z,+)的生成元为1或-1
  • ( Z n , + ) \left( Z _ { n } , + \right) (Zn,+)的生成元为 a ˉ , ( a , n ) = 1 \bar { a } , ( a , n ) = 1 aˉ,(a,n)=1

    证明:设 z n = ⟨ a ˉ ⟩ ∵ 1 ˉ ∈ Z n z _ { n } = \langle \bar { a } \rangle \quad \because \bar{1}\in Z _ { n } zn=aˉ1ˉZn
    ∴ \therefore 必有 k , k a ˉ = 1 ˉ ⇔ ∃ p ∈ Z , k a + p n = 1 k,k\bar{a}=\bar{1} \Leftrightarrow \exists p \in Z , \quad k a + p n = 1 k,kaˉ=1ˉpZ,ka+pn=1
    ⇔ ( a , n ) = 1 \Leftrightarrow( a , n) = 1 (a,n)=1

  • Q , + Q,+ Q,+)与( Q ∗ , ⋅ Q^{*},\cdot Q,)不同构

    证明:设(Q,+)与(Q*, ⋅ \cdot )同构
    f ( a ) = 2 f(a)=2 f(a)=2 ,则 f ( a ) = f ( a 2 + a 2 ) = f ( a 2 ) f ( a 2 ) = 2 ∉ Q ∗ f(a)=f(\frac{a}{2}+\frac{a}{2})=f(\frac{a}{2})f(\frac{a}{2})=\sqrt{2} \notin Q^{*} f(a)=f(2a+2a)=f(2a)f(2a)=2 /Q

  • 循环群的子群仍是循环群,且
    (1) ( Z , + ) (Z,+) (Z,+)的全部子群为 H m = ⟨ m ⟩ , m = 0 , 1 , 2 , H_{m}=\langle m \rangle ,m=0,1,2, Hm=m,m=0,1,2,
    (2) ( Z n , + ) (Z_{n},+) (Zn,+)的全部子群为 ⟨ 0 ˉ ⟩ \langle \bar{0}\rangle 0ˉ ⟨ d ˉ ⟩ , d ∣ n \lang \bar{d} \rangle,d|n dˉ,dn

    证明:(1)设 H ⩽ Z , H \leqslant Z , HZ, H ≠ { 0 } , H \neq \{ 0 \} , H={0}, M = { x ∣ x ∈ H , x > 0 } M = \{ x | x \in H , x > 0 \} M={xxH,x>0}
    ∵ x ∈ H ∴ x ∈ H ∴ M ≠ ϕ \because x \in H \quad \therefore x \in H \quad \therefore M \neq \phi xHxHM=ϕ
    由自然数集的良序性可知, M M M存在最小元 m m m
    ∴ ∀ x ∈ M , x = p m + r , ∴ 0 ≤ r < m , r = x − p m ∈ M \therefore \forall x \in M , \quad x=p m + r , \quad \therefore 0 \leq r < m , r = x - p m \in M xM,x=pm+r,0r<m,r=xpmM
    M M M最小性得 r = 0 ∴ M = { k m ∣ k ∈ Z + } r = 0 \quad \therefore M = \left\{ k m | k \in Z ^ { + } \right\} r=0M={kmkZ+}
    ∴ H = { k m ∣ k ∈ Z } = ⟨ m ⟩ \therefore H = \{ k m | k \in Z \} = \langle m \rangle H={kmkZ}=m
    (2) 令 Z n = { 0 ˉ , 1 ˉ , Z _ { n } = \left\{ \bar { 0} , \bar {1} , \right. Zn={0ˉ,1ˉ, ⋯ \cdots , n − 1 ‾ } , ,\overline { n - 1 } \}, ,n1}, H ⩽ Z , H \leqslant Z , HZ, H ≠ { 0 ‾ } H \neq \{ \overline { 0 } \} H={0}
    M = { k ∣ k ˉ ∈ H \ { 0 ‾ } , k < n } , M ≠ ϕ M = \{ k | \bar { k } \in H \backslash \{ \overline { 0 } \} , k < n \} ,M \neq \phi M={kkˉH\{0},k<n},M=ϕ是自然数的子集,且由最小元 d d d
    ∀ x ∈ M , x = p d + r , 0 ≤ r < d , r ˉ = x ˉ − p d ˉ ∈ H \forall x \in M , x = p d + r , 0 \leq r < d , \bar { r } = \bar { x } - p \bar { d } \in H xM,x=pd+r,0r<d,rˉ=xˉpdˉH
    ∵ d \because d d为最小元 ∴ r = 0 \quad \therefore r =0 r=0
    ∴ M = { k d ∣ k > 0 } , H = { k d ˉ ∣ k = 0 , 1 , 2 , ⋯   } \therefore M = \{ kd | k > 0 \} , H = \{ k \bar{d} | k = 0,1,2 , \cdots \} M={kdk>0},H={kdˉk=0,1,2,}
    d d d最小 ⇒ ∃ m ∈ z + , m d = n \Rightarrow \exists m \in z ^ { + } , m d = n mz+,md=n
    ∴ H = { 0 ‾ , d ˉ , 2 d ˉ , ⋯   , ( m − 1 ) d ˉ ⟩ , d ∣ n \therefore H = \{ \overline { 0 } , \bar { d } , \bar { 2d } , \cdots , \bar{(m - 1)d} \rangle,d|n H={0,dˉ,2dˉ,,(m1)dˉ,dn


陪集

几个定价命题

  • a H = H ⇔ a ∈ H aH = H \Leftrightarrow a\in H aH=HaH

    ⇐ \Leftarrow :由定义可知
    ⇒ : e ∈ H , ∃ h ′ ∈ H , a h ′ = e \Rightarrow: e \in H , \quad \exists h ^ { \prime } \in H , \quad a h ^ { \prime } = e :eH,hH,ah=e

  • b ∈ a H ⇔ a H = b H b \in a H \Leftrightarrow a H = b H baHaH=bH

    ⇒ : b ∈ a H ∴ ∃ h ′ ∈ H b = a h ′ \Rightarrow: b \in a H \therefore \exist h ^ { \prime } \in H \quad b = a h ^ { \prime } :baHhHb=ah
    b H = a h ′ H = a H b H = a h ^ { \prime } H = a H bH=ahH=aH
    ⇐ : e ∈ H \Leftarrow: e \in H \quad :eH be ∈ a H \in aH aH

  • a H = b H ⇔ a − 1 b ∈ H ( H a = H b ⇔ b a − 1 ∈ H ) a H = b H \Leftrightarrow a ^ { - 1 } b \in H \left( H a = H b \Leftrightarrow b a ^ { - 1 }\in H \right) aH=bHa1bH(Ha=Hbba1H)

    ⇒ : H = a − 1 b H ∴ a − 1 b ∈ H \Rightarrow: H = a ^ { - 1 } b H \quad \therefore a ^ { - 1 } b \in H :H=a1bHa1bH
    ⇐ a − 1 b ∈ H ∃ h ∈ H a − 1 b = h b = a h ∈ a H \Leftarrow a ^ { - 1 } b \in H \quad \exists h \in H \quad a ^ { - 1 } b = h \quad b = a h \in a H a1bHhHa1b=hb=ahaH

子群指数

H ≤ G H \leq G HG, H H H G G G中的左(右)陪集个数,用 [ G : H ] [ G: H ] [G:H]表示

拉格朗日定理

H ≤ G , ∣ G ∣ = ∣ H ∣ [ G : H ] H \leq G , | G | = | H | [G:H] HG,G=H[G:H]

  • G为有限群, H ≤ G , H\leq G, HG, ∣ H ∣ ∣ ∣ G ∣ |H| | |G| HG
  • ∣ G ∣ < ∞ |G| < \infty G<时, ∀ a ∈ G , o ( a ) ∣ ∣ G ∣ \forall a \in G,o ( a ) | | G | aG,o(a)G
  • ∣ G ∣ = p | G | = p G=p(素数),则 G = C p G = C _ { p} G=Cp,即素数阶群必为循环群

    证明: ∀ a ∈ G , a ≠ e \forall a \in G , a \neq e aG,a=e,由 ( 2 ) : ∘ ( a ) ∣ ∣ a ∣ = P ( 2 ): \circ ( a ) | | a | = P (2):(a)a=P
    ∵ o ( a ) > 1 ∴ o ( a ) = p \because o ( a ) > 1 \quad \therefore o ( a ) = p o(a)>1o(a)=p
    ∴ G = ⟨ a ⟩ \therefore G=\langle a \rangle G=a

命题

  • A = { a H ∣ a ∈ G } A = \{ a H|a \in G \} A={aHaG}构成划分
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ ∣ A ∩ B ∣ | A B | = \frac { | A | |B | } { | A \cap B | } AB=ABAB
  • A ⩽ G , B ⩽ G , ∃ g , h ∈ G , A g = B h , A \leqslant G , B \leqslant G , \exists g , h \in G , A g = B h , AG,BG,g,hG,Ag=Bh,则$ A = B$

    证明: A ⊆ B , A \subseteq B , AB,由于 A g = B h Ag=Bh Ag=Bh
    ∴ g = b h , ∀ a ∈ A , a b h = a g = b 1 h \therefore g = b h, \quad \forall a \in A,abh=ag=b_{1}h g=bh,aA,abh=ag=b1h
    ∴ a = b 1 b − 1 ∈ B \therefore a = b_{1} b ^ { - 1 } \in B a=b1b1B


正规子群和商群

正规子群

H ⩽ G , ∀ g ∈ G , g H = H g , H \leqslant G, \forall g \in G , \quad g H = H g , HG,gG,gH=Hg,则称H为G的正规子群,记为 H ⊴ G H \unlhd G HG

性质

∀ a ∈ G , a H = H a ⇔ ∀ a ∈ G , ∀ h ∈ H , a h a − 1 ∈ H \forall a \in G , a H = H a \Leftrightarrow \forall a \in G , \forall h \in H , a h a ^ { - 1 } \in H aG,aH=HaaG,hH,aha1H
⇔ ∀ a ∈ G , a H a − 1 ⊆ H ⇔ ∀ a ∈ G , a H a − 1 = H \Leftrightarrow \forall a \in G , a H a ^ { - 1 } \subseteq H \Leftrightarrow \forall a \in G , aHa ^ { - 1 } = H aG,aHa1HaG,aHa1=H

1 ⇒ 2 : ∀ a ∈ G , ∀ h ∈ H , a h ∈ H a ⇒ a h = h 1 a ⇒ a h a − 1 = h 1 ∈ H 2 ⇒ 3 : a h a − 1 ⇒ a H a − 1 ⊆ H \begin{aligned} 1 \Rightarrow 2 &: \forall a \in G , \forall h \in H , a h \in H a \Rightarrow a h = h_{1} a \\ & \Rightarrow a h a ^ { - 1 } = h_{1} \in H \\ 2 \Rightarrow 3 &: a ha^{-1} \Rightarrow a H a ^ { - 1 } \subseteq H \end{aligned} 1223:aG,hH,ahHaah=h1aaha1=h1H:aha1aHa1H
3 ⇒ 4 : ∀ a ∈ G , a H a − 1 3 \Rightarrow 4: \forall a \in G, aHa^{-1} 34:aG,aHa1 ⊆ H \subseteq H H
∵ a − 1 ∈ G ∴ a − 1 H ( a − 1 ) − 1 = a − 1 H a ⊆ H \because a ^ { - 1 } \in G \quad \therefore a ^ { - 1 } H \left( a ^ { - 1 } \right)^{-1} = a ^ { - 1 } H a\subseteq H a1Ga1H(a1)1=a1HaH
∀ h ∈ H , a − 1 h a = h 1 ∈ H \forall h \in H , a ^ { - 1 } h a = h_{1}\in H hH,a1ha=h1H
∴ h = a h a − 1 ∈ a H a − 1 \therefore h = a h a ^ { - 1 } \in aHa ^ { - 1 } h=aha1aHa1
∴ H ⊆ a H a − 1 ∴ H = a H a − 1 \therefore H \subseteq a H a ^ { - 1 } \quad \therefore H = a H a ^ { - 1 } HaHa1H=aHa1
4 ⇒ 1 : a H a − 1 ⇒ ( a H a − 1 ) a = H a ⇒ a H = H a 4\Rightarrow 1: a H a ^ { - 1 } \Rightarrow \left( a H a ^ { - 1 } \right) a = H a \Rightarrow aH=Ha 41:aHa1(aHa1)a=HaaH=Ha

商群

H ⊴ G , G / H = { a H ∣ a ∈ G } = { H a ∣ a ∈ G } , G / H H \unlhd G,G / H = \{ a H | a \in G \} = \{ H a | a \in G \},G/H HG,G/H={aHaG}={HaaG},G/H关于子集乘法构成的群称为G关于H的商群

命题

  • 指数为2的子群为正规子群

    证明: H ⩽ G , [ G : H ] = 2 H \leqslant G , \quad [ G: H ] = 2 HG,[G:H]=2
    G ∈ G G \in G GG \ H H \quad H a H ∩ H = ϕ aH \cap H = \phi aHH=ϕ
    G = H U a H = H U H a G = H U a H = H U H a \quad G=HUaH=HUHa
    ∴ a H = a \therefore a H = a aH=a \ H = H a H= H a H=Ha
    ∴ H ⊴ G \therefore H \unlhd G HG

  • A ⊴ G , B ⊴ G , A \unlhd G , B \unlhd G , AG,BG, A ∩ B ⊴ G , A B ⊴ G A \cap B \unlhd G , A B \unlhd G ABG,ABG

    证明:
    ( 1 ) ∀ h ∈ A ∩ B , g ∈ G (1)\forall h \in A \cap B , g \in G (1)hAB,gG
    ∵ h ∈ A , A ⊴ G \because h \in A , A \unlhd G hA,AG
    ∴ g h g − 1 ∈ A \therefore ghg ^ { - 1 } \in A ghg1A
    ∵ h ∈ B , B ⊴ G ∴ g h g − 1 ∈ B \because h \in B , B \unlhd G \quad \therefore g h g ^ { - 1 } \in B hB,BGghg1B
    ∴ g h g − 1 ∈ A ∩ B ∴ A ∩ B ⊴ G \therefore g h g ^ { - 1 } \in A \cap B \quad \therefore A \cap B \unlhd G ghg1ABABG
    ( 2 ) (2) (2)先证 A B ⩽ G A B \leqslant G \quad ABG
    由于 A ⊴ G ∴ A B = B A ∴ A B ≤ G A\unlhd G \quad \therefore A B = B A\quad \therefore A B \leq G AGAB=BAABG(由子群性质可得)
    再证 A B ⊴ G : ∀ g ∈ G , a b ∈ A B A B\unlhd G: \forall g \in G , a b \in A B ABG:gG,abAB
    g a b g − 1 = ( g a g − 1 ) ( g b g − 1 ) = a 1 b 1 ∈ A B g a b g ^ { - 1 } = \left( g a g ^ { - 1 } \right) \left( gbg ^ { - 1 } \right) = a_{1} b_{1} \in A B gabg1=(gag1)(gbg1)=a1b1AB
    ∴ A B ⊴ G \therefore A B \unlhd G ABG

  • A ⊴ G , B ≤ G , A \unlhd G , B \leq G , AG,BG, A ∩ B ⊴ B , A B ⩽ G A \cap B \unlhd B , A B \leqslant G ABB,ABG

    ( 1 ) ∀ h ∈ A ∩ B , b ∈ B (1)\forall h \in A \cap B , b \in B (1)hAB,bB
    ∵ h ∈ A , b ∈ G : b h b − 1 ∈ A \because h \in A , b \in G \quad: b h b ^ { - 1 } \in A hA,bG:bhb1A
    ∵ h ∈ B ∴ b h b − 1 ∈ B ∴ b h b − 1 ∈ A ∩ B \because h \in B \quad \therefore b h b ^ { - 1 } \in B \quad \therefore b h b ^ { - 1 } \in A \cap B hBbhb1Bbhb1AB
    ∴ A ∩ B ⊴ B \therefore A \cap B \unlhd B ABB
    ( 2 ) A ⊴ G ∴ A B = B A ∴ A B ⩽ G (2)A \unlhd G \quad \therefore A B = B A \quad \therefore A B \leqslant G (2)AGAB=BAABG


群的同态

定义

两个群 ( G , ⋅ ) ( G ′ , ∘ ) (G,\cdot )(G',\circ ) (G,)(G,),若存在 f : G → G ′ f:G \rightarrow G' f:GG, ∀ a , b ∈ G , f ( a ⋅ b ) = f ( a ) ∘ f ( b ) \forall a,b \in G,f(a \cdot b)=f(a) \circ f(b) a,bG,f(ab)=f(a)f(b),则称 f f f G G G G ′ G' G的一个同态,表示为 G ∼ f G ′ G \stackrel{f}{\sim } G' GfG
如果 f f f为单射,则称为单同态, f f f为满射,则称为满同态, f f f为双射,则称为同构,同构记为 G ≅ G ′ G \cong G' GG

同态基本定理

  • 核: G ∼ f G ′ G \stackrel{f}{\sim } G' GfG K = { a ∣ a ∈ G , f ( a ) = e ′ } = f − 1 ( e ′ ) K = \left\{ a | a \in G , f ( a ) = e' \right\} = f ^ { - 1 } \left( e'\right) K={aaG,f(a)=e}=f1(e) K K K是同态 f f f的核,记为 K e r f Kerf Kerf
  • K K K是群
  • K ⊴ G K\unlhd G KG
  • ∀ a ′ ∈ I m f , \forall a ^ { \prime } \in Im f , aImf, f ( a ) = a ′ , f ( a ) = a ^ { \prime } , f(a)=a, f − 1 ( a ′ ) = a k f ^ { - 1 } \left( a ^ { \prime } \right) = a k f1(a)=ak
  • G / K ≅ G ′ G / K \cong G' G/KG

    证明:
    G / K = { g K ∣ g ∈ G } σ : g K → f ( g ) ( G / K → G ′ ) G / K = \{ gK | g \in G \} \quad \sigma : g K \rightarrow f ( g ) \quad (G / K \rightarrow G') G/K={gKgG}σ:gKf(g)(G/KG)
    ∀ g 1 , g 2 ∈ G , \forall g_{1} , g _ { 2 } \in G,\quad g1,g2G, g 1 K = g 2 K g _ { 1 } K = g _ { 2 } K g1K=g2K
    g 1 − 1 g 2 ∈ K ⇔ f ( g 1 − 1 g 2 ) = e ′ g _ { 1 } ^ { - 1 } g _ { 2 } \in K \Leftrightarrow f \left( g _ { 1 } ^ { - 1 } g_{2} \right) =e' g11g2Kf(g11g2)=e
    ⇔ f ( g 1 ) = f ( g 2 ) \Leftrightarrow f \left( g _ { 1 } \right) = f \left( g _ { 2 } \right) f(g1)=f(g2)
    ∴ σ \therefore \sigma σ为单射
    ∀ b ∈ G ′ , ∃ a ∈ G , f ( a ) = b \forall b \in G ^ { \prime } , \exists a \in G , f ( a ) = b bG,aG,f(a)=b
    ∴ a k ∈ G / K σ ( a k ) = f ( a ) = b \therefore a k \in G / K \quad \sigma ( a k ) = f ( a ) = b akG/Kσ(ak)=f(a)=b
    ∴ σ \therefore \sigma σ为满射
    σ ( g 1 k g 2 k ) = σ ( g 1 g 2 k ) = f ( g 1 g 2 ) \sigma \left( g _{1}k g _ { 2 } k \right) = \sigma \left( g_{1} g_{2} k \right) = f \left( g _ { 1 } g _ { 2 } \right) σ(g1kg2k)=σ(g1g2k)=f(g1g2)
    = f ( g 1 ) f ( g 2 ) = σ ( g 1 k ) σ ( g 2 k ) =f \left( g_ { 1 } \right) f ( g_{2} ) = \sigma \left( g_ { 1 } k \right) \sigma ( g_{2}k ) =f(g1)f(g2)=σ(g1k)σ(g2k)
    ∴ σ \therefore \sigma σ为同构

  • G ∼ f G ′ G \stackrel{f}{\sim } G' GfG φ \varphi φ G G G G / K G/K G/K的自然同态, ∃ G / K \exist G/K G/K G ′ G' G的同构 σ \sigma σ使 f = σ φ f=\sigma \varphi f=σφ

    σ : g K → f ( g ) \sigma : g K \rightarrow f ( g ) σ:gKf(g)
    ∀ x ∈ G \forall x\in G xG ( σ φ ) ( x ) = σ ( φ ( x ) ) = σ ( x K ) = f ( x ) (\sigma \varphi)(x)=\sigma(\varphi(x))=\sigma(xK)=f(x) (σφ)(x)=σ(φ(x))=σ(xK)=f(x)
    ∴ σ φ = f \therefore \sigma \varphi=f σφ=f


定义

  • A A A是非空集合, ( A , + ) (A,+) (A,+)为可换群, ( A , ⋅ ) (A,\cdot) (A,)为半群,且满足加法和乘法的分配率,则称 ( A , + , ⋅ ) (A,+,\cdot) (A,+,)为环
  • 若对乘法可换,则称可换环

零因子

a b = 0 , a ≠ 0 , b ≠ 0 , a ab=0,a\neq0,b\neq0,a ab=0,a=0,b=0,a为零因子,b为右零因子

整环

无零因子的可换环

除环

至少有两个元素:单位元和逆元, A ∗ = A \ { 0 } A^{*}=A\backslash\{0\} A=A\{0}构成乘法群

  • 可换的除环或乘法构成群的整环
  • 最简单的域: { 0 , 1 } \{ 0,1 \} {0,1}
  • 环无零因子的充分必要条件是乘法消去律成立
  • 有限的无零因子环是除环(满足消去律,乘法成群)
  • 有限整环是域(同时为除环和整环)

子环

  • 子环性质:
    • S ⊆ A , ∀ a , b ∈ S , a − b ∈ S , a b ∈ S ⇔ S S\subseteq A,\forall a,b \in S,a-b \in S,ab \in S \Leftrightarrow S SA,a,bS,abS,abSS A A A的子环
    • S 1 , S 2 S_{1},S_{2} S1,S2 A A A子环 ⇒ S 1 ∩ S 2 \Rightarrow S_{1}\cap S_{2} S1S2 A A A子环
  • 左理想、右理想: 相当于群的陪集
  • 理想: 相当于正规子群
  • 商环: A A A为环, I I I A A A的理想, A A A作为加群关于 I I I的商群 A / I = { a + I ∣ a ∈ A } A/I=\{a+I|a\in A\} A/I={a+IaA}

环的同构与同态

A A A A ′ A' A,有 f : A → A ′ f:A\rightarrow A' f:AA ∀ a , b ∈ A \forall a,b \in A a,bA f ( a + b ) = f ( a ) + f ( b ) f(a+b)=f(a)+f(b) f(a+b)=f(a)+f(b) f ( a b ) = f ( a ) ∘ f ( b ) f(ab)=f(a)\circ f(b) f(ab)=f(a)f(b),称 f f f为同态,若 f f f为单射,称单同态,若 f f f为满射,称满同态,若 f f f为双射,称同构


  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值