傅里叶变换和频域滤波基础

傅里叶变换和频域滤波基础


1. 傅里叶变换

1.1 从傅里叶级数到傅里叶变换的推导
  • 欧拉公式: e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta+jsin\theta ejθ=cosθ+jsinθ
  • 从傅里叶级数到傅里叶变换:
    1. 利用欧拉公式,将傅里叶级数从三角函数形式化为指数形式
    2. 利用黎曼和,将其中的累加形式化为积分形式
  • 傅里叶级数三角函数形式:
    • f ( t ) f(t) f(t)为具有周期T的周期函数,可以表示为 f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s ( n ω t ) + b n s i n ( n ω t ) ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infin}(a_n cos(n\omega t)+b_n sin(n\omega t)) f(t)=2a0+n=1(ancos(nωt)+bnsin(nωt))
    • 其中, ω = 2 π T , a n = 2 T ∫ − T 2 T 2 f ( t ) c o s ( n ω t )   d t , b n = 2 T ∫ − T 2 T 2 f ( t ) s i n ( n ω t )   d t \omega=\frac{2\pi}{T},a_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)cos(n\omega t)\ dt,b_n=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)sin(n\omega t)\ dt ω=T2π,an=T22T2Tf(t)cos(nωt) dt,bn=T22T2Tf(t)sin(nωt) dt
    • n = 0 n=0 n=0时, a 0 = 2 T ∫ − T 2 T 2 f ( t ) d t a_0=\frac{2}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt a0=T22T2Tf(t)dt
  • 三角函数形式到指数形式的推导:
    • 根据欧拉公式 e j θ = c o s θ + j s i n θ e^{j\theta}=cos\theta+jsin\theta ejθ=cosθ+jsinθ有: c o s θ = e j θ + e − j θ 2 , s i n θ = e j θ − e − j θ 2 i = − j ⋅ e j θ − e − j θ 2 cos\theta=\frac{e^{j\theta}+e^{-j\theta}}{2},sin\theta=\frac{e^{j\theta}-e^{-j\theta}}{2i}=-j\cdot\frac{e^{j\theta}-e^{-j\theta}}{2} cosθ=2ejθ+ejθ,sinθ=2iejθejθ=j2ejθejθ
    • 代入得 f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s ( n ω t ) + b n s i n ( n ω t ) = a 0 2 + ∑ n = 1 ∞ ( a n e j n ω t + e − j n ω t 2 − j ⋅ b n e j n ω t − e − j n ω t 2 ) = a 0 2 + ∑ n = 1 ∞ ( a n − j b n 2 e j n ω t + a n + j b n 2 e − j n ω t ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infin}(a_n cos(n\omega t)+b_n sin(n\omega t)\\=\frac{a_0}{2}+\sum_{n=1}^{\infin}(a_n \frac{e^{jn\omega t}+e^{-jn\omega t}}{2} -j\cdot b_n\frac{e^{jn\omega t}-e^{-jn\omega t}}{2})\\=\frac{a_0}{2}+\sum_{n=1}^{\infin}(\frac{a_n-jb_n}{2}e^{jn\omega t}+\frac{a_n+jb_n}{2}e^{-jn\omega t}) f(t)=2a0+n=1(ancos(nωt)+bnsin(nωt)=2a0+n=1(an2ejnωt+ejnωtjbn2ejnωtejnωt)=2a0+n=1(2anjbnejnωt+2an+jbnejnωt)
    • c 0 = a 0 2 , c n = a n − j b n 2 , d n = a n + j b n 2 , c_0=\frac{a_0}{2},c_n=\frac{a_n-jb_n}{2},d_n=\frac{a_n+jb_n}{2}, c0=2a0,cn=2anjbn,dn=2an+jbn, f ( t ) = c 0 + ∑ n = 1 ∞ ( c n e j n ω t + d n e − j n ω t ) f(t)=c_0+\sum_{n=1}^{\infin}(c_ne^{jn\omega t}+d_ne^{-jn\omega t}) f(t)=c0+n=1(cnejnωt+dnejnωt)
    • c 0 = 1 T ∫ − T 2 T 2 f ( t ) d t , c n = 1 T ∫ − T 2 T 2 f ( t ) ( c o s ( n ω t ) − j s i n ( n ω t ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) e − j n ω t d t , d n = 1 T ∫ − T 2 T 2 f ( t ) ( c o s ( n ω t ) + j s i n ( n ω t ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) e j n ω t d t c_0=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)dt,\\c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)(cos(n\omega t)-jsin(n\omega t))dt=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\omega t}dt,\\d_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)(cos(n\omega t)+jsin(n\omega t))dt=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{jn\omega t}dt c0=T12T2Tf(t)dt,cn=T12T2Tf(t)(cos(nωt)jsin(nωt))dt=T12T2Tf(t)ejnωtdt,dn=T12T2Tf(t)(cos(nωt)+jsin(nωt))dt=T12T2Tf(t)ejnωtdt
    • 可以看出 d n = c − n , ∑ n = 1 ∞ d n e − j n ω t = ∑ n = 1 ∞ c − n e − j n ω t = ∑ − ∞ − 1 c n e j n ω t d_n=c_{-n},\sum_{n=1}^{\infin}d_ne^{-jn\omega t}=\sum_{n=1}^{\infin}c_{-n}e^{-jn\omega t}=\sum_{-\infin}^{-1}c_{n}e^{jn\omega t} dn=cn,n=1dnejnωt=n=1cnejnωt=1cnejnωt
    • f ( t ) = c 0 + ∑ n = 1 ∞ ( c n e j n ω t + d n e − j n ω t ) = c 0 e j 0 ω t + ∑ n = 1 ∞ c n e j n ω t + ∑ n = 1 ∞ d n e − j n ω t = c 0 e j 0 ω t + ∑ n = 1 ∞ c n e j n ω t + ∑ n = − ∞ − 1 c n e j n ω t = ∑ n = − ∞ ∞ c n e j n ω t = 1 T ∑ n = − ∞ ∞ ∫ − T 2 T 2 f ( t ) e − j n ω t d t ⋅ e j n ω t f(t)=c_0+\sum_{n=1}^{\infin}(c_ne^{jn\omega t}+d_ne^{-jn\omega t})\\=c_0e^{j0\omega t}+\sum_{n=1}^{\infin}c_ne^{jn\omega t}+\sum_{n=1}^{\infin}d_ne^{-jn\omega t}\\=c_0e^{j0\omega t}+\sum_{n=1}^{\infin}c_ne^{jn\omega t}+\sum_{n=-\infin}^{-1}c_ne^{jn\omega t}\\=\sum_{n=-\infin}^{\infin}c_n e^{jn\omega t}\\=\frac{1}{T}\sum_{n=-\infin}^{\infin}\int_{-\frac{T}{2}}^{\frac{T}{2}}f(t)e^{-jn\omega t}dt\cdot e^{jn\omega t} f(t)=c0+n=1(cnejnωt+dnejnωt)=c0ej0ωt+n=1cnejnωt+n=1dnejnωt=c0ej0ωt+n=1cnejnωt+n=1cnejnωt=n=cnejnωt=T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值