抽象代数重点内容

本文概述了集合论中的基本概念,如幂集、集族、等价类和商集,以及群的定义、子群的性质、循环群和同构的概念。还讨论了群与环的结构,包括环的定义和理想,以及群与同构的关系,如循环群与整数加法群的同构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章

集合A上的概念:

幂集P(A):集合A的所有子集集合,若集合元素为n个,幂集中元素个数为2的n次方。幂集的元素是集合。

集族:幂集P(A)的子集。

等价类[a]:x∈A,且满足xRa,R是A上的等价关系。

商集:等价类的集合,即集合中的元素是形如[a]的等价类。

划分:划分是集族,划分中的元素是幂集的元素,也可认为是集合A的子集。

划分满足:(1)每个元素不为空集

(2)两两之间不想交

(3)元素的并集等于A

商集就是一个划分,反过来,划分可以确定集合A上的一个等价关系。

如集合A为{1,3,4,5,8}。{ {1, 3}, {4}, {5, 8} }就是A的一个划分,包括三个等价类[1],[4],[5]。从每一个划分的集合里取一个元素组成完全集{1,4,5},另外{3,4,8}也是一个完全集。

第二章 

群<G, *>:

集合G上的运算*满足:封闭,结合,存在单位元,逆元(可减弱为左单位元和左逆元)。若满足交换律,为Abel群。

证明H是G的子群:

封闭。a在H中,且a在G的逆元也在H中(或者是ab^{-1}\epsilon H

非空子集合{a}在G中生成的子群<{a}>:

对于对称群<G, *>(或者置换群)而言:集合G上的元素是置换,运算*是置换的合成

循环群

设G是群,H是G的子群,H在G中有一关系~,满足a,b∈G,a~b当且仅当ab^{-1}\epsilon H,称~是H在G中确定的右关系。这里指的G上的关系~就是指ab^{-1}\epsilon H,是个确定关系。

左陪集:a∈G,H是G的子群,aH={ ah | h ∈ H },即用H中所有元素左乘a,得到的集合称为H的一个左陪集(或者叫H在G中的一个左陪集)。

(注意选择G上的元素,去乘以子群H上的每一个元素)

结论:HH=H。a∈H,则aH=H。

h属于H,h = he ∈aH,所以H是aH子集。同理Ha=H。

G上的元素a在右关系下的等价类等于H的右陪集Ha如果a属于H,则根据Ha = H,可知此时等价类就是H

a~b当且仅当Ha=Hb。即a~b充要条件是Ha=Hb。

a的阶数等于<a>的阶数,<a>是{a}在G中生成的子群,所以整除G的阶数。

注意区别等价类和子群的区别,任意一个子群都要有单位元,划分的话,任意的一个元素只能在一个等价类中。而陪集能够将G进行划分,说明这些陪集里,只有H本身是子群,其他的陪集Ha(a不属于H)都只能算等价类,不构成群

推论2:G是有限群,元素个数是素数,则只有{e}和G两个子群。

推论3:G是有限群,元素个数是素数,则G是循环群(即存在g,满足G=<g>)。

取a属于G,a不等于e,则<a>的阶数要整除|G|,所以|<a>|=|G|。子集和集合个数相等,所以他们相等。<a>=G,即G是循环群。

推论4:|G|=2|H|, He=H,H是其中一个陪集(也可考虑a∈H,由于Ha=H所以H是陪集),对于a不属于H时,Ha和H不想交(a的等价类都不在H中,否则Ha=H)。所以G=HA+H。

所以a,b不属于H时,一定属于Ha。同理b^{-1}也不属于H,从而属于Ha。Ha是a在右关系下的等价类,进一步,Ha下的所有元素满足a~b,按照等价类的定义,即ab^{-1}\epsilon H,从而a(b^{-1})^{-1}\epsilon H,即ab属于H。

右陪集和左陪集数量一致

第3章 同构:

对于群<G, +>和<H,*>而言,存在双射(即可逆)f:

f(a+b) = f(a)*f(b),则他们是同构的。

对于群而言,需要将单位元映射成单位元。若有生成元满足g^{k}=e,则f(g+g)=f(g)*f(g)\Rightarrow f(g + g^{2})=f(g)*f(g)*f(g)=>f(g)^{k}=e_{H}

即f(g)也是H的一个生成元,阶数为k。因此对于群而言,如果仅仅个数相同,不一定同构,比如一个是循环群,另一个也需要是循环群。

对于线性空间而言,维度相同即可同构。双射f将一组基映射成另一组基即为所求。

同构是等价关系。n阶循环群同构(In, +),无限循环群同构于整数加法群(I, + )。

可逆变换:G上的可逆(映射)变换在映射合成下构成群I(G)。自同构集合Aut(G)是I(G)的一个子群。左乘变换是可逆变换(置换),属于I(G)。所有的左乘变换\lambda _{a}={ax,x\epsilon G}形成的集合L=\begin{Bmatrix} \lambda _{a}|a\epsilon G \end{Bmatrix}是I(G)的子群。L和G同构: 定义f: f(a)=\lambda _{a},a属于G,属于L。且证明f是双射且f(ab)=f(a)f(b)。

凯莱定理:每个群都同构于其上所有可逆变换作成的群I(G)的一个子群。

G到G上的所有的可逆映射在合成下构成的群,和对称群Sn同构。

推理:每个都群同构于Sn的一个子群。

第4章 环与理想

环的定义:

集合R上有+运算和*运算: <R,+>是交换群(即Abel群,也就是在群的基础上加法运算还要满足交换律),*运算满足结合律(a * b) * c = a * (b * c),*对+满足分配律a * (b + c) = a * b + a * c, (a + b) * c = a * c + b * c。满足三个条件称<R,+,*>是个环。

加法运算上的单位元0被称为零元素。

抽象代数 出版时间:2013年版 丛编项: 高等学校教材 内容简介   《高等学校教材:抽象代数》介绍了抽象代数学中最基本的内容,共4章。第一章介绍了等价关系、分类和代数系统等预备知识,第二章至第四章则分别介绍了群、环、域和伽罗瓦(Galois)理论等。在每一章的末尾,还简述了一些有趣的史料和有关数学家的传记。《高等学校教材:抽象代数》可作为高等学校数学类专业本科高年级学生及研究生的教材,也可作为相关技术人员的参考用书。 目录 第一章 预备知识 第1节 集合与映射 第2节 置换集合S 第3节 等价关系与分类 第4节 代数系统 附录 第二章 群 第1节 群的概念和性质 第2节 子群 第3节 正规子群与商群 第4节 群的同态与同构 第5节 循环群 第6节 群的直积与直和 第7节 群在集合上的作用 第8节 西罗(Sylow)定理 第9节 有限交换群 附录 第三章 环 第1节 环的概念和性质 第2节 无零因子环及其性质 第3节 理想与商环 第4节 环的同态与同构 第5节 极大理想与素理想 第6节 整环的分式化 第7节 唯一分解整环 第8节 多项式环 第9节 多项式环的因子分解 附录 第四章 域 第1节 域的扩张 第2节 单扩张 第3节 有限扩张与代数扩张 第4节 分裂域和正规扩张 第5节 有限域 第6节 伽罗瓦基本定理 第7节 有限可解群 第8节 根式扩张与解方程 第9节 尺规作图 附录 参考文献 名词索引 符号索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值