第一章
集合A上的概念:
幂集P(A):集合A的所有子集集合,若集合元素为n个,幂集中元素个数为2的n次方。幂集的元素是集合。
集族:幂集P(A)的子集。
等价类[a]:x∈A,且满足xRa,R是A上的等价关系。
商集:等价类的集合,即集合中的元素是形如[a]的等价类。
划分:划分是集族,划分中的元素是幂集的元素,也可认为是集合A的子集。
划分满足:(1)每个元素不为空集
(2)两两之间不想交
(3)元素的并集等于A
商集就是一个划分,反过来,划分可以确定集合A上的一个等价关系。
如集合A为{1,3,4,5,8}。{ {1, 3}, {4}, {5, 8} }就是A的一个划分,包括三个等价类[1],[4],[5]。从每一个划分的集合里取一个元素组成完全集{1,4,5},另外{3,4,8}也是一个完全集。
第二章
群<G, *>:
集合G上的运算*满足:封闭,结合,存在单位元,逆元(可减弱为左单位元和左逆元)。若满足交换律,为Abel群。
证明H是G的子群:
封闭。a在H中,且a在G的逆元也在H中(或者是)
非空子集合{a}在G中生成的子群<{a}>:
对于对称群<G, *>(或者置换群)而言:集合G上的元素是置换,运算*是置换的合成。
循环群
设G是群,H是G的子群,H在G中有一关系~,满足a,b∈G,a~b当且仅当,称~是H在G中确定的右关系。这里指的G上的关系~就是指
,是个确定关系。
左陪集:a∈G,H是G的子群,aH={ ah | h ∈ H },即用H中所有元素左乘a,得到的集合称为H的一个左陪集(或者叫H在G中的一个左陪集)。
(注意选择G上的元素,去乘以子群H上的每一个元素)
结论:HH=H。a∈H,则aH=H。
h属于H,h = he ∈aH,所以H是aH子集。同理Ha=H。
G上的元素a在右关系下的等价类等于H的右陪集Ha。如果a属于H,则根据Ha = H,可知此时等价类就是H。
a~b当且仅当Ha=Hb。即a~b充要条件是Ha=Hb。
a的阶数等于<a>的阶数,<a>是{a}在G中生成的子群,所以整除G的阶数。
注意区别等价类和子群的区别,任意一个子群都要有单位元,划分的话,任意的一个元素只能在一个等价类中。而陪集能够将G进行划分,说明这些陪集里,只有H本身是子群,其他的陪集Ha(a不属于H)都只能算等价类,不构成群。
推论2:G是有限群,元素个数是素数,则只有{e}和G两个子群。
推论3:G是有限群,元素个数是素数,则G是循环群(即存在g,满足G=<g>)。
取a属于G,a不等于e,则<a>的阶数要整除|G|,所以|<a>|=|G|。子集和集合个数相等,所以他们相等。<a>=G,即G是循环群。
推论4:|G|=2|H|, He=H,H是其中一个陪集(也可考虑a∈H,由于Ha=H所以H是陪集),对于a不属于H时,Ha和H不想交(a的等价类都不在H中,否则Ha=H)。所以G=HA+H。
所以a,b不属于H时,一定属于Ha。同理也不属于H,从而属于Ha。Ha是a在右关系下的等价类,进一步,Ha下的所有元素满足a~b,按照等价类的定义,即
,从而
,即ab属于H。
右陪集和左陪集数量一致
第3章 同构:
对于群<G, +>和<H,*>而言,存在双射(即可逆)f:
f(a+b) = f(a)*f(b),则他们是同构的。
对于群而言,需要将单位元映射成单位元。若有生成元满足,则
即f(g)也是H的一个生成元,阶数为k。因此对于群而言,如果仅仅个数相同,不一定同构,比如一个是循环群,另一个也需要是循环群。
对于线性空间而言,维度相同即可同构。双射f将一组基映射成另一组基即为所求。
同构是等价关系。n阶循环群同构(In, +),无限循环群同构于整数加法群(I, + )。
可逆变换:G上的可逆(映射)变换在映射合成下构成群I(G)。自同构集合Aut(G)是I(G)的一个子群。左乘变换是可逆变换(置换),属于I(G)。所有的左乘变换形成的集合
是I(G)的子群。L和G同构: 定义f: f(a)=
,a属于G,属于L。且证明f是双射且f(ab)=f(a)f(b)。
凯莱定理:每个群都同构于其上所有可逆变换作成的群I(G)的一个子群。
G到G上的所有的可逆映射在合成下构成的群,和对称群Sn同构。
推理:每个都群同构于Sn的一个子群。
第4章 环与理想
环的定义:
集合R上有+运算和*运算: <R,+>是交换群(即Abel群,也就是在群的基础上加法运算还要满足交换律),*运算满足结合律(a * b) * c = a * (b * c),*对+满足分配律a * (b + c) = a * b + a * c, (a + b) * c = a * c + b * c。满足三个条件称<R,+,*>是个环。
加法运算上的单位元0被称为零元素。