算法类面试常见问题知识点总结(机器学习及自然语言处理相关)(更新中)

本文总结了作者在面试中遇到的机器学习和深度学习相关问题,包括过拟合和欠拟合的解决方法、Dropout原理、Autoencoder的解释、特征选择、梯度下降、LSTM的工作原理、梯度爆炸和梯度消失的解释,以及LightGBM、Attention机制、BERT和Transformer的基本原理等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章主要是总结一下我在面试过程中被问到的机器学习和深度学习相关的知识点,同时也是为了给自己做一个快速查漏补缺的笔记。

1. 过拟合和欠拟合的定义以及解决方法

欠拟合、过拟合及其解决方法(https://blog.csdn.net/willduan1/article/details/53070777),这篇文章侧重于数学公式的理解。

机器学习防止欠拟合、过拟合方法(https://zhuanlan.zhihu.com/p/29707029),这篇文章更侧重于概念的介绍。

2. Dropout的原理

深度学习中Dropout原理解析(https://zhuanlan.zhihu.com/p/38200980),非常清晰易懂,强烈推荐看一下。

A Gentle Introduction to Dropout for Regularizing Deep Neural Networks(https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/),英语好的话这篇文章也推荐读一下。

原始论文链接:Dropout: A Simple Way to Prevent Neural Networks from
Overfitting(http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf

3. 解释一下Autoencoder

Introduction to autoencoders.(https://www.jeremyjordan.me/autoencoders/),非常清晰全面,涵盖了基本所有相关概念。

Variational Autoencoders(https://www.youtube.com/watch?v=9zKuYvjFFS8&t=80s)需要科学上网,视频前面介绍了关于autoencoder的基本概念,主要内容注重于variational AE的介绍。个人感觉看视频比看文字介绍更直观和容易一些~

4.在进行数据建模的时候,如何选择特征

5. 解释一下什么是梯度下降
(这个虽然是非常基础的概念但是被问到的频率真的很高!一定要会,而且感觉要提前练习一下如何清晰明了的解释出来&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值