深度学习 deep neuron network(DNN)hidden layer and how it works

文章探讨了深度学习中的关键概念,包括神经网络的隐藏层作用,线性模型与添加或移除WhiteGaussianNoise的影响,以及反向传播算法在训练过程中的应用。通过深入理解这些机制,可以更好地构建和优化深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hidden layer and how it works

此处不对【【官方双语】深度学习之神经网络的结构 Part 1 ver 2.0-哔哩哔哩】 

【【官方双语】深度学习之反向传播算法 上/下 Part 3 ver 0.9 beta-哔哩哔哩】

【藤校博士手推公式!1小时讲明白Diffusion Model 算法原理、数学公式-哔哩哔哩】

此处想法:

视频中linear model

与diffusion model 加入与去除White Gaussian Noise?

深度学习,输入->function->输出,输入经由一系列的function(模型、方程的叠加,变换)计算得到想要的输出结果,hidden layer或者layer在每一层显得杂乱‘无意义’,但从头到尾的整个运算结果(想要得到的输出)是有意义的。

【什么是深度神经网络DNN-哔哩哔哩】 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值