基于opencv的强级联器重新训练动物脸检测模型

本文档详述了如何利用OpenCV的级联分类器和Adaboost算法,结合已有的动物脸数据集,训练出一个高精度的检测模型。首先介绍了训练目的和选定的方法——基于OpenCV的opencb_traincascade。接着,详细阐述了搭建OpenCV和CMake环境的过程,包括安装、配置及解决遇到的问题。最后,通过使用createsamples和traincascade工具,创建并训练模型,过程中注意了neg样本路径的正确设置,以及理解训练参数对模型性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、目的

    在对动物脸视频进行检测的过程中,开源算法模型的检测效果一般,达不到实验需求。因此,想基于已经的大量数据集,自己训练出一个检测模型。引用该篇文献“Rapid Object Detection using a Boosted Cascade of Simple Features”的检测方法。借助平台opencv。

二、具体实现

1、确定方法

    参考该网址博客“https://blog.csdn.net/wjb820728252/article/details/72465347”,选择opencv平台下的opencb_traincascade方法。

 

2、平台搭建

2.1 安装opencv

    参考博客“https://blog.csdn.net/yunpiao123456/article/details/52538561”。给出OpenCv的官方下载地址:OpenCv下载。opencv的下载非常简单,解压缩后即可使用。在测试opencv性能时,由于文件配置问题,导致无法识别opencv。仔细添加目录时,有包含目录和库目录,两者添加的路径也不相同。再则是附加依赖配置时,找到D:\Installer\opencv\opencv\build\x64\vc15\lib路径下的红框内容,写入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值