浙江大学数据结构(1.2.3复杂度的渐进表示法)

本文深入解析了复杂度的渐进表示法,包括大O、Omega和Theta符号的定义及其应用。介绍了如何通过这些符号来分析算法的运行时间和空间需求,并提供了if-else结构、循环和多项式复杂度的具体分析技巧。
摘要由CSDN通过智能技术生成

复杂度的渐进表示法

  • T(n)=O(f(n))表示存在常数C>0,n0>0使得当n>=n0时有T(n)<=C*f(n)
  • T(n)=Ω(g(n))表示存在常数C>0,n0>0使得当n>=n0时有T(n)>=C*g(n)
  • T(n)=θ(h(n))表示同时有T(n)=O(h(n))和T(n)=Ω(h(n))

复杂度分析小窍门

  • 若两段算法分别有复杂度T1(n)=O(f1(n))和T2(n)=O(f2(n)),则
  1. T1(n)+T2(n)=max(O(f1(n)),O(f2(n)))
  2. T1(n)*T2(n)=O(f1(n)*f2(n))
  • 若T1(n)*T2(n)=O(f1(n)*f2(n))
  • 若T(n)是关于n的k阶多项式,那么T(n)=θ(n的k次)
  • 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度
  • if-else结构的复杂度取决于if的条件判断复杂度和两个分枝部分的复杂度,总体复杂度取三者中最大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值