复杂度的渐进表示法
- T(n)=O(f(n))表示存在常数C>0,n0>0使得当n>=n0时有T(n)<=C*f(n)
- T(n)=Ω(g(n))表示存在常数C>0,n0>0使得当n>=n0时有T(n)>=C*g(n)
- T(n)=θ(h(n))表示同时有T(n)=O(h(n))和T(n)=Ω(h(n))
复杂度分析小窍门
- 若两段算法分别有复杂度T1(n)=O(f1(n))和T2(n)=O(f2(n)),则
- T1(n)+T2(n)=max(O(f1(n)),O(f2(n)))
- T1(n)*T2(n)=O(f1(n)*f2(n))
- 若T1(n)*T2(n)=O(f1(n)*f2(n))
- 若T(n)是关于n的k阶多项式,那么T(n)=θ(n的k次)
- 一个for循环的时间复杂度等于循环次数乘以循环体代码的复杂度
- if-else结构的复杂度取决于if的条件判断复杂度和两个分枝部分的复杂度,总体复杂度取三者中最大