怎么在程序中表示一个图?
- 邻接矩阵G[N][N]——N个顶点从0—N-1编号
- G[i][j]=
- 1(若<Vi,Vj>是G中的边)
- 0(否则)
- 问题:对于无向图的存储,怎样可以省一半空间?
- 用于一个长度为N*(N+1)/2的1维数组A存储{G00,G10,G11,...,Gn-1 0,...Gn-1 n-1}
- 则Gij在A中对应的下标是:(i*(i+1)/2+j)
- 对应网络,只要把G[i][j]的值定义为边<Vi,Vj>的权重即可。
- 问题:Vi和Vj之间若没有边该怎么表示?
邻接矩阵——有什么好处?
- 直观、简单、好理解
- 方便检查任意一对顶点间是否存在边
- 方便找任一顶点的所有邻接点(有边直接相连的顶点)
- 方便计算任一顶点的“度”(从该点发出的边数为出度,指向该点的边数为入度)
- 无向图:对应行(或列) 非元素的个数
- 有向图:对应行非0元素的个数是出度;对应列非0元素的个数是入度
邻接矩阵——有什么不好?
- 浪费空间——存稀疏图(点很多而边很少)有大量无效元素
- 浪费时间——统计稀疏图中一共有多少条边