浙江大学数据结构(6.1.2什么是图—邻接矩阵表示法)

怎么在程序中表示一个图?

  • 邻接矩阵G[N][N]——N个顶点从0—N-1编号
  • G[i][j]=
  1. 1(若<Vi,Vj>是G中的边)
  2. 0(否则)
  • 问题:对于无向图的存储,怎样可以省一半空间?
  • 用于一个长度为N*(N+1)/2的1维数组A存储{G00,G10,G11,...,Gn-1 0,...Gn-1 n-1}
  • 则Gij在A中对应的下标是:(i*(i+1)/2+j)
  • 对应网络,只要把G[i][j]的值定义为边<Vi,Vj>的权重即可。
  1. 问题:Vi和Vj之间若没有边该怎么表示?

邻接矩阵——有什么好处?

  • 直观、简单、好理解
  • 方便检查任意一对顶点间是否存在边
  • 方便找任一顶点的所有邻接点(有边直接相连的顶点)
  • 方便计算任一顶点的“度”(从该点发出的边数为出度,指向该点的边数为入度)
  1. 无向图:对应行(或列) 非元素的个数
  2. 有向图:对应行非0元素的个数是出度;对应列非0元素的个数是入度

邻接矩阵——有什么不好?

  • 浪费空间——存稀疏图(点很多而边很少)有大量无效元素
  • 浪费时间——统计稀疏图中一共有多少条边
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值