交叉验证(Cross-Validation)
目录
交叉验证是在机器学习建立模型和验证模型参数时常用的办法,一般被用于评估一个机器学习模型的表现。更多的情况下,我们也用交叉验证来进行模型选择(model selection)。
交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓“交叉”。
那么什么时候才需要交叉验证呢?交叉验证用在数据不是很充足的时候。如果数据样本量小于一万条,我们就会采用交叉验证来训练优化选择模型。如果样本大于一万条的话,我们一般随机的把数据分成三份,一份为训练集(Training Set),一份为验证集(Validation Set),最后一份为测试集(Test Set)。用训练集来训练模型,用验证集来评估模型预测的好坏和选择模型及其对应的参数。把最终得到的模型再用于测试集,最终决定使用哪个模型以及对应参数。
一、基本方法
回到交叉验证,根据切分的方法不同,交叉验证分为下面三种:
第一种是简单交叉验证,所谓的简单,是和其他交叉验证方法相对而言的。首先,我们随机的将样本数据分为两部分(比如: 70%的训练集,30%的测试集),然后用训练集来训练模型,在测试集上验证模型及参数。接着,我们再把样本打乱,重新选择训练集和测试集,继续训练数据和检验模型。最后我们选择损失函数评估最优的模型和参数。
第二种是 S折交叉验证( S-Folder Cross Validation),也是经常会用到的。和第一种方法不同, S折交叉验证先将数据集 D随机划分为 S个大小相同的互斥子集,即 ,每次随机的选择 S-1份作为训练集,剩下的1份做测试集。当这一轮完成后,重新随机选择 S份来训练数据。若干轮(小于 S )之后,选择损失函数评估最优的模型和参数。注意,交叉验证法评估结果的稳定性和保真性在很大程度上取决于 S取值。
图来自:周志华《机器学习》
第三种是留一交叉验证(Leave-one-out Cross Validation),它是第二种情况的特例,此时 S等于样本数 N,这样对于 N个样本,每次选择 N-1个样本来训练数据,留一个样本来验证模型预测的好坏。此方法主要用于样本量非常少的情况,比如对于普通适中问题, N小于50时,我一般采用留一交叉验证。
通过反复的交叉验证,用损失函数来度量得到的模型的好坏,最终我们可以得到一个较好的模型。那这三种情况,到底我们应该选择哪一种方法呢?一句话总结,如果我们只是对数据做一个初步的模型建立,不是要做深入分析的话,简单交叉验证就可以了。否则就用S折交叉验证。在样本量少的时候,使用S折交叉验证的特例留一交叉验证。
此外还有一种比较特殊的交叉验证方式,也是用于样本量少的时候。叫做自助法(bootstrapping)。比如我们有m个样本(m较小),每次在这m个样本中随机采集一个样本,放入训练集,采样完后把样本放回。这样重复采集m次,我们得到m个样本组成的训练集。当然,这m个样本中很有可能有重复的样本数据。同时,用原始的m个样本做测试集。这样接着进行交叉验证。由于我们的训练集有重复数据,这会改变数据的分布,因而训练结果会有估计偏差,因此,此种方法不是很常用,除非数据量真的很少,比如小于20个。
1、保留交叉验证 hand-out cross validation
首先随机地将已给数据分为两部分:训练集和测试集 (例如,70% 训练集,30% 测试集);
然后用训练集在各种条件下 (比如,不同的参数个数) 训练模型,从而得到不同的模型;
在测试集上评价各个模型的测试误差,选出测试误差最小的模型。
这种方式其实严格意义上并不能算是交叉验证,因为训练集的样本数始终是那么多,模型并没有看到更多的样本,没有体现交叉的思想。
由于是随机的将原始数据分组,所以最后测试集上准确率的高低与原始数据的分组有很大的关系,所以这种方法得到的结果其实并不具有说服性。
2、k折交叉验证 k-fold cross validation
这是应用最多的交叉验证方式。
首先随机地将数据集切分为 k 个互不相交的大小相同的子集;
然后将 k-1 个子集当成训练集训练模型,剩下的 (held out) 一个子集当测试集测试模型;
将上一步对可能的 k 种选择重复进行 (每次挑一个不同的子集做测试集);
这样就训练了 k 个模型,每个模型都在相应的测试集上计算测试误差,得到了 k 个测试误差,对这 k 次的测试误差取平均便得到一个交叉验证误差。这便是交叉验证的过程。
计算平均测试误差 (交叉验证误差) 来评估当前参数下的模型性能。
在模型选择时,假设模型有许多 tuning parameter 可供调参,一组 tuning parameter 便确定一个模型,计算其交叉验证误差,最后选择使得交叉验证误差最小的那一组 tuning parameter。这便是模型选择过程。
k 一般大