气象统计常用公式

Chapter2 气象资料及其表示方法

1. 方差

s x = 1 n ∑ t = 1 n ( x t − x ‾ ) 2 t = 1 , 2 , 3 , ⋯   , n = 1 n x ′ x ′ T x ′ 表 示 距 平 向 量 \begin{aligned} s_x &= \frac{1}{n} \sum_{t = 1}^n(x_t-\overline{x})^2 \quad t = 1,2,3,\cdots,n \\ &= \frac{1}{n}x^{'} x^{'T} \quad x^{'}表示距平向量 \end{aligned} sx=n1t=1n(xtx)2t=1,2,3,,n=n1xxTx

2. 标准差

s x = 1 n ∑ t = 1 n ( x t − x ‾ ) 2 t = 1 , 2 , 3 , ⋯   , n \begin{aligned} s_x = \sqrt{\frac{1}{n} \sum_{t = 1}^n(x_t-\overline{x})^2} \quad t = 1,2,3,\cdots,n \end{aligned} sx=n1t=1n(xtx)2 t=1,2,3,,n

3. 变率

  • 绝对变率

V a = 1 n ∑ t = 1 n ∣ x t − x ‾ ∣ t = 1 , 2 , 3 , ⋯   , n \begin{aligned} V_a = \frac{1}{n} \sum_{t = 1}^n|x_t-\overline{x}| \quad t = 1,2,3,\cdots,n \end{aligned} Va=n1t=1nxtxt=1,2,3,,n

  • 相对变率

V r = V a x ‾ \begin{aligned} V_r = \frac{V_a}{\overline{x}} \end{aligned} Vr=xVa

4. 变差系数

V p = s x x ‾ = 1 x ‾ 1 n ∑ t = 1 n ( x t − x ‾ ) 2 \begin{aligned} V_p &= \frac{s_x}{\overline{x}} \\ &= \frac{1}{\overline{x}} \sqrt{\frac{1}{n} \sum_{t = 1}^n(x_t - \overline{x})^2} \end{aligned} Vp=xsx=x1n1t=1n(xtx)2

5. 标准化变量

x ⋆ = x − x ‾ s x 易 得 : E ( x ⋆ ) = 0 ,   V a r ( x ⋆ ) = 1 \begin{aligned} x^{\star} = \frac{x-\overline{x}}{s_x} \\ 易得:E(x^{\star}) = 0,\, Var(x^{\star}) = 1 \end{aligned} x=sxxxE(x)=0,Var(x)=1

6. 数据矩阵

m X n = [ x 11 x 12 ⋯ x 1 n x 21 x 22 ⋯ x 2 n ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m n ] = ( x 1 , x 2 , ⋯   , x n ) = ( x t ) t = 1 , 2 , 3 , ⋯   , n 该 矩 阵 表 示 n 个 样 本 的 m 个 要 素 , 即 行 表 示 一 个 要 素 ( 变 量 ) , 列 表 示 一 个 观 测 ( 样 本 ) _mX_n = \left[ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{matrix} \right] = (x_1, x_2,\cdots,x_n) = (x_t) \quad t = 1,2,3,\cdots,n \\ 该矩阵表示n个样本的m个要素,即行表示一个要素(变量),列表示一个观测(样本) mXn=x11x21xm1x12x22xm2x1nx2nxmn=(x1,x2,,xn)=(xt)t=1,2,3,,nnm()()
x t = ( x 1 t , x 2 t , ⋯   , x m t ) T 第 t 个 样 本 的 m 个 要 素 向 量 x_t = (x_{1t}, x_{2t},\cdots,x_{mt})^T \quad 第t个样本的m个要素向量 xt=(x1t,x2t,,xmt)Ttm

7. 均值向量

x ‾ = ( x 1 ‾ , x 2 ‾ , ⋯   , x m ‾ ) T x i ‾ = 1 n ∑ t = 1 n x i t ( t = 1 , 2 , 3 , ⋯   , n . i = 1 , 2 , 3 , ⋯   , m ) \begin{aligned} \overline{x} &=(\overline{x_1},\overline{x_2},\cdots,\overline{x_m})^T \\ \overline{x_i} &= \frac{1}{n} \sum_{t = 1}^nx_{it} \quad (t = 1,2,3,\cdots,n. \quad i = 1,2,3,\cdots,m) \end{aligned} xxi=(x1,x2,,xm)T=n1t=1nxit(t=1,2,3,,n.i=1,2,3,,m)

8. 协方差

s i j = 1 n ∑ t = 1 n ( x i t − x i ‾ ) ( x j t − x j ‾ ) = 1 n ∑ t = 1 n x i t x j t − x i ‾ x j ‾ = 1 n ∑ t = 1 n x i t ′ x j t ′ 距 平 形 式 = 1 n x i x j 向 量 形 式 , 距 平 向 量 的 内 积 \begin{aligned} s_{ij} &= \frac{1}{n} \sum_{t = 1}^n(x_{it} - \overline{x_i})(x_{jt} - \overline{x_j}) \\ &= \frac{1}{n} \sum_{t = 1}^n x_{it}x_{jt} - \overline{x_i} \overline{x_j} \\ &= \frac{1}{n} \sum_{t = 1}^n x_{it}^{'}x_{jt}^{'} \quad距平形式 \\ &= \frac{1}{n}x_i x_j \quad向量形式,距平向量的内积 \end{aligned} sij=n1t=1n(xitxi)(xjtxj)=n1t=1nxitxjtxixj=n1t=1nxitxjt=n1xixj

9. 协方差矩阵(离差积矩阵)

S S = ( s s i j ) ( i , j = 1 , 2 , ⋯   , m ) 其 中 : s s i j = ∑ t = 1 n ( x i t − x i ‾ ) ( x j t − x j ‾ ) 总 体 协 方 差 矩 阵 的 无 偏 估 计 : S = 1 n − 1 S S \begin{aligned} SS &= (ss_{ij}) \quad (i,j = 1,2,\cdots,m) \\ 其中:ss_{ij} &= \sum_{t = 1}^n(x_{it} - \overline{x_i})(x_{jt} - \overline{x_j}) \\ 总体协方差矩阵的无偏估计:S &= \frac{1}{n-1}SS \end{aligned} SS:ssij:S=(ssij)(i,j=1,2,,m)=t=1n(xitxi)(xjtxj)=n11SS

10. 偏度系数

  • 老师PPT里的公式

g 1 = 1 6 n ∑ i = 1 n ( x i − x ‾ s ) 3 \begin{aligned} g_1 = \sqrt{\frac{1}{6n}} \sum_{i=1}^{n} \left( \frac{x_i - \overline{x}}{s}\right)^3 \end{aligned} g1=6n1 i=1n(sxix)3

  • 概率论课本的公式

β s = ν 3 ν 2 3 / 2 ν k 表 示 样 本 k 阶 中 心 距 \begin{aligned} \beta_s = \frac{\nu_3}{\nu_2^{3/2}} \quad \nu_k表示样本k阶中心距 \end{aligned} βs=ν23/2ν3νkk

11. 峰度系数

  • 老师PPT里的公式

g 2 = 1 24 n [ 1 n ∑ i = 1 n ( x i − x ‾ s ) 4 − 3 ] \begin{aligned} g_2 = \sqrt{\frac{1}{24n}} \left[ \frac{1}{n} \sum_{i=1}^{n} \left( \frac{x_i - \overline{x}}{s}\right)^4 - 3 \right] \end{aligned} g2=24n1 [n1i=1n(sxix)43]

  • 概率论课本的公式

β k = ν 4 ν 2 2 − 3 \begin{aligned} \beta_k = \frac{\nu_4}{\nu_2^2} - 3 \end{aligned} βk=ν22ν43

Chapter3 选择最大信息的预报因子

1. 样本值对总体值的抽样误差

E ( x ‾ − m ) 2 = E ( x − m ) 2 n μ x 2 = σ 2 n \begin{aligned} E(\overline{x} - m)^2 &= \frac{E(x - m)^2}{n} \\ \mu_x^2 = \frac{\sigma^2}{n} \end{aligned} E(xm)2μx2=nσ2=nE(xm)2

2. 条件概率

P ( A ∣ B ) = P ( A B ) P ( B ) \begin{aligned} P(A|B) = \frac{P(AB)}{P(B)} \end{aligned} P(AB)=P(B)P(AB)

  • A与B相互独立
    P ( A B ) = P ( A ) P ( B ) P(AB) = P(A)P(B) P(AB)=P(A)P(B)

3. 二项分布

P n ( m ) = C n m p m ( 1 − p ) m − n 其 中 C n m = n ! m ! ( n − m ) ! \begin{aligned} P_n(m) &= C_n^m p^m (1-p)^{m-n} \\ 其中 C_n^m &= \frac{n!}{m!(n-m)!} \end{aligned} Pn(m)Cnm=Cnmpm(1p)mn=m!(nm)!n!

4. 简单相关系数

r x y = s x y s x s y = 1 n ∑ i = 1 n ( x i − x ‾ ) ( y i − y ‾ ) 1 n ∑ i = 1 n ( x i − x ‾ ) 2 1 n ∑ i = 1 n ( y i − y ‾ ) 2 = ∑ i = 1 n x i y i − n x ‾ ⋅ y ‾ 1 n ∑ i = 1 n ( x i − x ‾ ) 2 1 n ∑ i = 1 n ( y i − y ‾ ) 2 = 1 n ∑ i = 1 n x i ′ y i ′ 1 n ∑ i = 1 n ( x i ′ ) 2 1 n ∑ i = 1 n ( y i ′ ) 2 \begin{aligned} r_{xy} &= \frac{s_{xy}}{s_x s_y} \\ &= \frac{\frac{1}{n} \sum_{i = 1}^n(x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i = 1}^n(x_i - \overline{x})^2} \sqrt{\frac{1}{n} \sum_{i = 1}^n(y_i - \overline{y})^2}} \\ &= \frac{\sum_{i = 1}^nx_i y_i - n \overline{x} \cdot \overline{y}}{\sqrt{\frac{1}{n} \sum_{i = 1}^n(x_i - \overline{x})^2} \sqrt{\frac{1}{n} \sum_{i = 1}^n(y_i - \overline{y})^2}} \\ &= \frac{\frac{1}{n} \sum_{i = 1}^n x_i^{'} y_i^{'}}{\sqrt{\frac{1}{n} \sum_{i = 1}^n(x_i^{'})^2} \sqrt{\frac{1}{n} \sum_{i = 1}^n (y_i^{'})^2}} \end{aligned} rxy=sxsysxy=n1i=1n(xix)2 n1i=1n(yiy)2 n1i=1n(xix)(yiy)=n1i=1n(xix)2 n1i=1n(yiy)2 i=1nxiyinxy=n1i=1n(xi)2 n1i=1n(yi)2 n1i=1nxiyi

5. 自相关系数

r ( j ) = s ( j ) s 2 = 1 s 2 ⋅ 1 n − j ∑ t = 1 n − j ( x t − x ‾ ) ( x t + j − x ‾ ) 其 中 s 2 为 该 序 列 的 方 差 , t = 1 , 2 , ⋯   , n − j \begin{aligned} r(j) &= \frac{s(j)}{s^2} \\ &= \frac{1}{s^2} \cdot \frac{1}{n-j} \sum_{t=1}^{n-j}(x_t - \overline{x})(x_{t+j} - \overline{x}) \\ &其中s^2为该序列的方差, t=1,2, \cdots, n-j \end{aligned} r(j)=s2s(j)=s21nj1t=1nj(xtx)(xt+jx)s2,t=1,2,,nj

6. 落后交叉相关系数

r x y ( j ) = s x y ( j ) s x s y = 1 s x s y ⋅ 1 n − j ∑ t = 1 n − j ( x t − x ‾ ) ( y t + j − y ‾ ) 其 中 s x , s y 分 别 为 序 列 x 和 y 的 标 准 差 , t = 1 , 2 , ⋯   , n − j \begin{aligned} r_{xy}(j) &= \frac{s_{xy}(j)}{s_xs_y} \\ &=\frac{1}{s_xs_y} \cdot \frac{1}{n-j} \sum_{t=1}^{n-j}(x_t - \overline{x})(y_{t+j} - \overline{y}) \\ &其中s_x,s_y分别为序列x和y的标准差, t=1,2, \cdots, n-j \end{aligned} rxy(j)=sxsysxy(j)=sxsy1nj1t=1nj(xtx)(yt+jy)sx,syxy,t=1,2,,nj

7. 偏相关系数

3 R 3 = [ r D D r D J r D F r J D r J J r J F r F D r F J r F F ] 其 中 D 为 12 月 , J 为 1 月 , F 为 2 月 _3R_3 = \left[ \begin{matrix} r_{DD} & r_{DJ} & r_{DF} \\ r_{JD} & r_{JJ} & r_{JF}\\ r_{FD} & r_{FJ} & r_{FF} \end{matrix} \\ \right] \\ 其中D为12月, J为1月, F为2月 3R3=rDDrJDrFDrDJrJJrFJrDFrJFrFFD12,J1,F2

r D J ⋅ F = − R D J ⋆ R D D ⋆ R J J ⋆ r D F ⋅ J = − R D F ⋆ R D D ⋆ R F F ⋆ \begin{aligned} r_{DJ \cdot F} &= -\frac{R^{\star}_{DJ}}{\sqrt{R^{\star}_{DD}R^{\star}_{JJ}}} \\ r_{DF \cdot J} &= -\frac{R^{\star}_{DF}}{\sqrt{R^{\star}_{DD}R^{\star}_{FF}}} \\ \end{aligned} rDJFrDFJ=RDDRJJ RDJ=RDDRFF RDF

Chapter4 回归分析

1. 一元线性回归

  • 回归系数

b = ( n x ‾ ⋅ y ‾ − ∑ i = 1 n x i y i )   /   ( n x ‾ 2 − ∑ i = 1 n x i 2 ) = s x y / s x 2 a = y ‾ − b ⋅ x ‾ \begin{aligned} b &= (n\overline{x} \cdot \overline{y} - \sum_{i=1}^nx_iy_i) \, / \, (n\overline{x}^2 - \sum_{i=1}^n x_i^2) \\ &= s_{xy}/s_x^2 \\ a &= \overline{y} - b \cdot \overline{x} \end{aligned} ba=(nxyi=1nxiyi)/(nx2i=1nxi2)=sxy/sx2=ybx

  • 反映回归效果的统计量

    • 离差平方和
      S y y = ∑ t = 1 n ( y t − y ‾ ) 2 \begin{aligned} S_{yy} = \sum_{t=1}^{n}(y_t - \overline{y})^2 \end{aligned} Syy=t=1n(yty)2

    • 回归平方和
        也称为可解释平方和或者回归方差
      U = ∑ t = 1 n ( y ^ t − y ‾ ) 2 \begin{aligned} U = \sum_{t=1}^{n}(\hat{y}_t - \overline{y})^2 \end{aligned} U=t=1n(y^ty)2

    • 残差平方和
        也称为不可解释平方和或者剩余方差
      Q = ∑ t = 1 n ( y t − y ^ t ) 2 \begin{aligned} Q = \sum_{t=1}^{n}(y_t - \hat{y}_t)^2 \end{aligned} Q=t=1n(yty^t)2

    • 判决系数
      R 2 = U S y y = r x y 2 \begin{aligned} R^2 = \frac{U}{S_{yy}} = r_{xy}^2 \end{aligned} R2=SyyU=rxy2

  • 回归系数与相关系数的关系
    b = s x y s x 2 = s y s x y s x s x s y = s y s x r x y \begin{aligned} b = \frac{s_{xy}}{s_x^2} = \frac{s_ys_{xy}}{s_xs_xs_y} = \frac{s_y}{s_x}r_{xy} \end{aligned} b=sx2sxy=sxsxsysysxy=sxsyrxy

  • 回归方程的显著性检验(F检验)
    F = U / m Q / ( n − m − 1 ) 或 F = r x y 2 / m ( 1 − r x y 2 ) / ( n − m − 1 ) 服 从 自 由 度 为 ( m , n − m − 1 ) 的 F 分 布 \begin{aligned} F &= \frac{U/m}{Q/(n-m-1)} \quad或\\ F &= \frac{r_{xy}^2/m}{(1-r_{xy}^2)/(n-m-1)}\\ 服&从自由度为(m, n-m-1)的F分布 \end{aligned} FF=Q/(nm1)U/m=(1rxy2)/(nm1)rxy2/m(m,nm1)F

2. 多元线性回归

  • 回归系数

b = ( X T X ) − 1 X T Y \begin{aligned} b = (X^TX)^{-1}X^TY \end{aligned} b=(XTX)1XTY

  • 复相关系数
    R = 1 − Q S y y = U S y y 此 处 Q 、 U 、 S y y 均 与 一 元 线 性 回 归 的 定 义 一 致 \begin{aligned} R = \sqrt{1 - \frac{Q}{S_{yy}}} = \sqrt{\frac{U}{S_{yy}}} \quad此处Q、U、S_{yy}均与一元线性回归的定义一致 \end{aligned} R=1SyyQ =SyyU QUSyy线

  • 多元线性回归方程的检验统计量
    F = U / m Q / ( n − m − 1 ) 或 F = R 2 / m ( 1 − R 2 ) / ( n − m − 1 ) 服 从 自 由 度 为 ( m , n − m − 1 ) 的 F 分 布 \begin{aligned} F &= \frac{U/m}{Q/(n-m-1)} \quad 或\\ F &= \frac{R^2/m}{(1-R^2)/(n-m-1)}\\ 服&从自由度为(m, n-m-1)的F分布 \end{aligned} FF=Q/(nm1)U/m=(1R2)/(nm1)R2/m(m,nm1)F

  • 方差贡献
    Q i = b i 2 c i i \begin{aligned} Q_i = \frac{b_i^2}{c_{ii}} \end{aligned} Qi=ciibi2

  • 预报因子的显著性检验

F i = Q i Q / ( n − m − 1 ) = b i 2 / c i i Q / ( n − m − 1 ) 服 从 自 由 度 为 ( 1 , n − m − 1 ) 的 F 分 布 \begin{aligned} F_i &= \frac{Q_i}{Q/(n-m-1)} = \frac{b_i^2 / c_{ii} }{Q/(n-m-1)} \\ 服&从自由度为(1, n-m-1)的F分布 \end{aligned} Fi=Q/(nm1)Qi=Q/(nm1)bi2/cii(1,nm1)F

Chapter5 气候趋势分析

1. 滑动平均

x j ^ = 1 k ∑ i = 1 k x i + j − 1 ( j = 1 , 2 , ⋯   , n − k + 1 ) k 为 滑 动 长 度 , 一 般 取 奇 数 \begin{aligned} \hat{x_j} &=\frac{1}{k} \sum_{i=1}^k x_{i+j-1} \quad (j=1,2,\cdots,n-k+1)\\ &k为滑动长度,一般取奇数 \end{aligned} xj^=k1i=1kxi+j1(j=1,2,,nk+1)k

2. 累积距平

x t ^ = ∑ i = 1 t ( x i − x ‾ ) ( t = 1 , 2 , ⋯   , n ) \begin{aligned} \hat{x_t}= \sum_{i=1}^t (x_i - \overline{x}) \quad (t=1,2,\cdots,n) \end{aligned} xt^=i=1t(xix)(t=1,2,,n)

3. 五、七、九点二次平滑

  • 五点平滑
    x ^ i − 2 = 1 35 ( − 3 x i − 2 + 12 x i − 1 + 17 x i + 12 x i + 1 − 3 x i + 2 ) \begin{aligned} \hat{x}_{i-2} = \frac{1}{35}(-3x_{i-2} + 12x_{i-1} +17x_{i} + 12x_{i+1} - 3x_{i+2}) \end{aligned} x^i2=351(3xi2+12xi1+17xi+12xi+13xi+2)

  • 七点平滑

x ^ i − 3 = 1 21 ( − 2 x i − 3 + 3 x i − 2 + 6 x i − 1 + 7 x i + 6 x i + 1 + 3 x i + 2 − 2 x i + 3 ) \begin{aligned} \hat{x}_{i-3} = \frac{1}{21}(-2x_{i-3} + 3x_{i-2} + 6x_{i-1} + 7x_{i} + 6x_{i+1} + 3x_{i+2} - 2x_{i+3}) \end{aligned} x^i3=211(2xi3+3xi2+6xi1+7xi+6xi+1+3xi+22xi+3)

  • 九点平滑

x ^ i − 4 = 1 231 ( − 21 x i − 4 + 14 x i − 3 + 39 x i − 2 + 54 x i − 1 + 59 x i + 54 x i + 1 + 39 x i + 2 + 14 x i + 3 − 21 x i + 4 ) \begin{aligned} \hat{x}_{i-4} = \frac{1}{231}(-21x_{i-4} + 14x_{i-3} + 39x_{i-2} + 54x_{i-1} + 59x_{i} + 54x_{i+1} + 39x_{i+2} + 14x_{i+3} - 21x_{i+4}) \end{aligned} x^i4=2311(21xi4+14xi3+39xi2+54xi1+59xi+54xi+1+39xi+2+14xi+321xi+4)

  • 6
    点赞
  • 69
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值