线性规划的对偶问题

标准型的对偶问题

线性规划的标准型如下:
目 标 函 数 : m a x     c 1 x 1 + c 2 x 2 + . . . + c n x n 等 式 约 束 : P 1 x 1 + P 2 x 2 + . . . + P n x n = b ⃗ 非 负 性 约 束 : x j ≥ 0                         目标函数:max \ \ \ c_1x_1+c_2x_2+...+c_nx_n \\ 等式约束:P_1x_1+P_2x_2+...+P_nx_n=\vec{b}\\ 非负性约束:x_j\geq0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ max   c1x1+c2x2+...+cnxnP1x1+P2x2+...+Pnxn=b xj0                       
直观的感觉,原问题和对偶问题互相为界,因此只有二者在都去的最优目标函数的时候才能建立起来联系。
找到最优目标函数,实质是找到最优基矩阵B。
可 行 性 条 件 ( 基 变 量 满 足 非 负 性 约 束 ) : B − 1 b ⃗ ≥ 0 非 基 变 量 都 是 0 , 自 动 满 足 可 行 性 条 件 。 最 优 性 条 件 : σ j ( i ) = c j ( i ) − C B T B − 1 P j ( i ) = 0    i ≤ m ( 基 变 量 的 检 验 数 等 于 0 ) σ j ( i ) = c j ( i ) − C B T B − 1 P j ( i ) ≤ 0    i ≥ m + 1 ( 非 基 变 量 的 检 验 数 小 于 等 于 0 ) 可行性条件(基变量满足非负性约束):B^{-1}\vec{b} \geq0 \\ 非基变量都是0,自动满足可行性条件。\\ 最优性条件:\\ \sigma_{j(i)}=c_{j(i)}-C_{B}^{T}B^{-1}P_{j(i)}=0 \ \ i\leq m(基变量的检验数等于0)\\ \sigma_{j(i)}=c_{j(i)}-C_{B}^{T}B^{-1}P_{j(i)} \leq 0 \ \ i\geq m+1(非基变量的检验数小于等于0)\\ ()B1b 00σj(i)=cj(i)CBTB1Pj(i)=0  im(0)σj(i)=cj(i)CBTB1Pj(i)0  im+1(0)
考虑通过最优性条件构建对偶问题的决策变量:
在这里插入图片描述
这里的 Y B Y_B YB就是对偶问题达到最优时的决策变量,是一个m维的列向量。

对偶问题的最优性条件由原问题的可行性条件构建:
在这里插入图片描述
总结
在这里插入图片描述
注意:

  1. 原问题和对偶问题的决策变量并无关联,他们互相为界,仅仅在最优处取得联系。
  2. 原问题的约束条件对应对偶问题的决策变量,因此对偶问题有m个决策变量。
  3. 原问题的决策变量对应对偶问题的约束条件,n个。
  4. 这里的对偶问题的决策变量没有非负性约束,因此转化为标准型需要做两件事,第一是将自由变量转化为非负性约束的变量,第二是将不等式约束转化为等式约束。

一般线性规划问题的对偶问题

原问题
在这里插入图片描述
对偶问题
在这里插入图片描述
在这里插入图片描述

原问题和对偶问题解的情况
在这里插入图片描述

  1. 当原问题存在有限最优解时,对偶问题也有。
  2. 当原问题无界时,对偶问题没有有限的可行解。当原问题无界时,即无法构建出最优性条件,而原问题的最优性条件恰恰是对偶问题的可行性条件。
  3. 当原问题没有无可行解时,对偶问题的情况不确定
    在这里插入图片描述

原问题和对偶问题总结

1.如果原问题是求最大,则对偶问题求最小,反之亦然。
2. 原问题的决策变量对应对偶问题的约束条件,原问题的约束条件对应对偶问题的决策变量。
3. 原问题的约束决策变量对应对偶问题的不等式约束,不等号的方向取决于原问题求最大值还是最小值;原问题的自由决策变量对应对偶问题的等式约束。
4. 原问题的不等式约束对应对偶问题的约束决策变量(要求非负),原问题的等式约束对应对偶问题的自由变量。

求对偶问题的一般方法

  1. 把b和c互换位置,系数矩阵改成转置,求最值反转。(如果原问题求最大,则对偶问题求最小)
  2. 确定对偶问题中哪些是等式约束,哪些是不等式约束:每个约束都对应于原问题的决策变量,约束决策变量对应不等式,自由决策变量对应等式。
  3. 确定不等式约束中不等号的方向:如果原问题是求最大,则是大于号;否则是小于号。
  4. 确定对偶问题中哪些是约束决策变量:取决于该问题对应的原问题的约束条件是否为不等式约束。

三种常见形式的对偶问题

  1. 标准形式
    原问题
    max ⁡ c T X s . t . A X = b X ≥ 0 \max{c^TX} \\s.t. AX=b \\ X\geq 0\\ maxcTXs.t.AX=bX0
    对偶问题
    min ⁡ b T Y s . t . A T Y ≥ c \min{b^T}Y \\ s.t. A^TY \geq c \\ minbTYs.t.ATYc
  2. 规范形式
    原问题
    min ⁡ c T X s . t . A X ≥ b X ≥ 0 \min{c^TX} \\s.t. AX \geq b \\ X\geq 0\\ mincTXs.t.AXbX0
    对偶问题
    max ⁡ b T Y s . t . A T Y ≤ c Y ≥ 0 \max{b^T}Y \\ s.t. A^TY \leq c \\ Y \geq 0 maxbTYs.t.ATYcY0
  3. 一般形式.
    在这里插入图片描述
  • 2
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值