**报错信息;**pandas.errors.ParserError: Error tokenizing data. C error: Expected 2 fields
问题代码:
df = pd.read_csv(r'berlin52.tsp', sep=" ",skiprows=6, header=None)
city = np.array(df[0][0:len(df)-2]) # 最后一行为EOF,不读入
city_name = city.tolist()
print(city_name)
修正代码:
df = pd.read_csv(r'berlin52.tsp', skiprows=6, header=None,delimiter="\t")
city = np.array(df[0][0:len(df)-2]) # 最后一行为EOF,不读入
city_name = city.tolist()
print(city_name)
问题分析:sep=" “和delimiter=”\t"的区别。
追溯到read_cvs的用法
pandas.read_csv(filepath_or_buffer, sep=, delimiter=None, header=‘infer', names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, iterator=False, chunksize=None, compression=‘infer', thousands=None, decimal='.', lineterminator=None, quotechar='"', quoting=0, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, error_bad_lines=True, warn_bad_lines=True, delim_whitespace=False, low_memory=True, memory_map=False, float_precision=None, storage_options=None)
sep :
字符串,分割符,默认值为‘,’。如果sep为None,则C引擎无法自动检测分隔符,但Python解析引擎可以检测,这意味着将使用后者,并通过Python的内置嗅探器csves.niffer自动检测分隔符。此外,长度大于1个字符的分隔符将被解释为正则表达式,并强制使用Python解析引擎。正则表达式示例:’\r\t’
delimiter :
字符串,分割符,默认值为 none。其是相当于sep的替代品,指定delimiter,那么sep便失效。
大白话就是sep=’\t’和delimiter="\t"是一样的。
参考链接:
https://blog.csdn.net/superbetterman/article/details/104753358/
http://www.yuepc.com/a/12765.html