研究背景
最优性准则(OC)方法的结构优化,本文的主题,其起源可以追溯到对强度设计问题的直观传统方法,最直接的是完全应力设计(FSD)准则及其相关的应力比调整算法。FSD准则表明,如果每个成员处于最大允许应力或至少在一种加载条件下处于最小尺寸,则结构的质量最小。这是静态确定和大多数不确定结构正确的。这个准则,以及其相对的,同时失效模式(SFM)准则,基于直观但不完整的假设,即如果结构在关键载荷下不会局部和全局失效,那么它必须是一个最优结构,因为不能再进一步减少尺寸和因此重量。
研究主旨
论文阐述了一种名为最优性准则(OC)的结构优化方法,该方法起源于传统的设计思路,特别是完全应力设计(FSD)的概念。作者指出,FSD认为若结构中每个部分都达到材料的最大允许应力,则结构为最优化设计。然而,这种方法忽略了内部力分布的影响。论文提出了一种新的OC方法,通过设定结构优化的条件,然后直接满足这些条件来调整设计。这种方法对于处理位移、应力和特征值约束的结构优化问题非常有效。文中还讨论了单约束和多约束情况下的应用。
研究特点
首先,讨论了导致采用最优性准则方法的历史背景,指出了传统设计方法的作用以及Prager基于变分原理的工作作为两个激励影响。这之后是利用离散化结构或模型的可分离属性的正式发展。指出了单约束情况的重要性,并且与之相关的特别简单但功能强大的最优性准则是被展示的,随后扩展到多个约束。示例用于说明位移、应力和特征值相关约束的方法。