分治法

算法 专栏收录该内容
53 篇文章 0 订阅

分治法的设计思想

对于一个规模为n的问题:若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

分治法所能解决的问题一般具有以下几个特征:

  1. 该问题的规模缩小到一定的程度就可以容易地解决。
  2. 该问题可以分解为若干个规模较小的相同问题。
  3. 利用该问题分解出的子问题的解可以合并为该问题的解。
  4. 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。

分治法的求解过程

分治法通常采用递归算法设计技术,在每一层递归上都有3个步骤:
① 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题。
② 求解子问题:若子问题规模较小而容易被解决则直接求解,否则递归地求解各个子问题。
③ 合并:将各个子问题的解合并为原问题的解。

根据分治法的分割原则,原问题应该分为多少个子问题才较适宜?各个子问题的规模应该怎样才为适当?
这些问题很难予以肯定的回答。但人们从大量实践中发现,在用分治法设计算法时,最好使子问题的规模大致相同。换句话说,将一个问题分成大小相等的k个子问题的处理方法是行之有效的。
当k=1时称为减治法。

许多问题可以取 k=2,称为二分法,如图所示,这种使子问题规模大致相等的做法是出自一种平衡子问题的思想,它几乎总是比子问题规模不等的做法要好。
在这里插入图片描述

  • 0
    点赞
  • 1
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值