动态规划法求解整数拆分问题

问题描述

求将正整数n无序拆分成最大数为k(称为n的k拆分)的拆分方案个数,要求所有的拆分方案不重复。

问题求解

设n=5,k=5,对应的拆分方案有:
在这里插入图片描述
为了防止重复计数,让拆分数保持从大到小排序。正整数5的拆分数为7。
采用动态规划求解整数拆分问题。设f(n,k)为n的k拆分的拆分方案个数:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
因此,f(n,k) = f(n-k,k) + f(n,k-1)
状态转移方程:
在这里插入图片描述

代码

int dp[MAXN][MAXN];

void Split(int n, int k)
{
	for(int i=1;i<=n;i++)
		for (int j = 1; j <= k; j++)
		{
			if (i == 1 || j == 1)
				dp[i][j] = 1;
			else if (i < j)
				dp[i][j] = dp[i][i];
			else if (i == j)
				dp[i][j] = dp[i][j - 1] + 1;
			else
				dp[i][j] = dp[i][j - 1] + dp[i - j][j];
		}
}
发布了59 篇原创文章 · 获赞 0 · 访问量 1208
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览