计算机视觉中的多视图几何 -- 2D射影几何与变换 -- 齐次坐标下的点、直线与二次曲线

2D射影几何与变换(1)

这篇主要介绍在2D射影空间中,点、直线与二次曲线的相关概念。
射影几何的核心在于从更高的维度看2维世界,从而可以得到很好的一些性质。


点与直线

直线

平面上的直线可以用 a x + b y + c = 0 ax+by+c=0 ax+by+c=0来表示,那么就可以用向量 ( a , b , c ) T (a,b,c)^T (a,b,c)T来表示一条直线,称为直线的齐次向量,因为 ( a , b , c ) T (a,b,c)^T (a,b,c)T k ( a , b , c ) T k(a,b,c)^T k(a,b,c)T表示同一个直线。具有这种齐次性的向量称为齐次向量, I R 3 IR^3 IR3中这样的向量集合(除去 ( 0 , 0 , 0 ) T (0,0,0)^T (0,0,0)T)就构成是射影空间 I P 2 IP^2 IP2

对于点 ( x , y ) (x,y) (x,y),它在直线上的充要条件是 a x + b y + c = 0 ax+by+c=0 ax+by+c=0,也就是 ( a , b , c ) ( x , y , 1 ) = 0 (a,b,c)(x,y,1)=0 (a,b,c)(x,y,1)=0,所以显然点在 I P 2 IP^2 IP2的齐次坐标为 ( x , y , 1 ) (x,y,1) (x,y,1),该坐标也满足齐次性,对于坐标 x = ( x 1 , x 2 , x 3 ) x=(x_1,x_2,x_3) x=(x1,x2,x3)表示 I R 2 IR^2 IR2上的点 ( x 1 / x 3 , x 2 / x 3 ) (x_1/x_3,x_2/x_3) (x1/x3,x2/x3)

直线的交点 x = l × l ′ x = l \times l' x=l×l

点连成的直线 l = x × x ′ l = x \times x' l=x×x

理想点

当我们考察两平行直线 a x + b y + c = 0 , a x + b y + c ′ = 0 ax+by+c=0, ax+by+c'=0 ax+by+c=0,ax+by+c=0的交点时,得到交点为 ( c ′ − c ) ( b , − a , 0 ) (c'-c)(b,-a,0) (cc)(b,a,0),显然该点不和二维平面空间上的任何点对应,而一般认为平行线交于无穷远点,所以将 x 3 = 0 x_3=0 x3=0的齐次坐标点看作无穷远点,也称为理想点。同时有 I P 2 IP^2 IP2的另一个解释,即将 x 3 ! = 0 x_3!=0 x3!=0的齐次坐标对应的 I R 2 IR^2 IR2中的有限点的集合加入 x 3 = 0 x_3=0 x3=0的点,扩充的集合作为射影空间。可以验证,所有理想点构成一条直线 I = ( 0 , 0 , 1 ) T I=(0,0,1)^T I=(0,0,1)T,即无穷远直线。
向量 ( b , − a ) (b,-a) (b,a)与直线 a x + b y + c = 0 ax+by+c=0 ax+by+c=0的法线相切,所以是直线的方向,所以无穷远直线可以看作是所有直线方向的集合。

I R 3 IR^3 IR3 I P 2 IP^2 IP2

I P 2 IP^2 IP2中的点可以看作 I R 3 IR^3 IR3中过原点的射线,因为其满足齐次性,即在 I R 3 IR^3 IR3中不管长度,方向决定一个点,同样, I P 2 IP^2 IP2中的线可以看作 I R 3 IR^3 IR3中过原点的平面。
在这里插入图片描述

自由度

I P 2 IP^2 IP2中元素的自由度往往是其向量维度减1,因为要满足齐次性,所以是由比率来确定唯一性的。

对偶性

I P 2 IP^2 IP2中,任何定理都有一个对偶定理,可以通过互换点和线的角色来得到。如上文中直线的交点和点连成的直线。

二次曲线

在欧式几何中,二次曲线是不同平面与圆锥的截线,方程为 a x 2 + b x y + c y 2 + d x + e y + f = 0 ax^2+bxy+cy^2+dx+ey+f=0 ax2+bxy+cy2+dx+ey+f=0,齐次化( x − > x 1 / x 3 , y − > x 2 / x 3 x->x_1/x_3, y->x_2/x_3 x>x1/x3,y>x2/x3)得到 a x 1 2 + b x 1 x 2 + c x 2 2 + d x 1 x 3 + e x 2 x 3 + f x 3 2 = 0 ax_1^2+bx_1x_2+cx_2^2+dx_1x_3+ex_2x_3+fx_3^2=0 ax12+bx1x2+cx22+dx1x3+ex2x3+fx32=0,可以写成矩阵 x T C x = 0 x^TCx=0 xTCx=0,其中
C = [ a b / 2 d / 2 b / 2 c e / 2 d / 2 c / 2 f ] C=\left[ \begin{matrix} a & b/2 & d/2 \\ b/2 & c & e/2 \\ d/2 & c/2 & f \end{matrix} \right] C=ab/2d/2b/2cc/2d/2e/2f
所以每一个对称矩阵都是一个二次曲线,因为其自由度为5,可以通过5个点来确定。

与二次曲线相切于x的直线满足 I = C x I = Cx I=Cx

对偶二次曲线

由对偶性,可以得到用直线定义的二次曲线 l T C ∗ l = 0 l^T C^{*} l=0 lTCl=0,其中 C ∗ C^{*} C是C的伴随矩阵,对于可逆对称阵, C ∗ = C − 1 C^{*}=C^{-1} C=C1,对偶二次曲线是由直线与二次曲线相切得到的,也就是说它的元素是与二次曲线相切的直线,而二次曲线的元素是点。对偶二次曲线是直线族,而对应的二次曲线是这些直线的包络。
在这里插入图片描述

退化二次曲线

如果C不满秩,则二次曲线是退化的,为两条直线(rank2)或一条重线(rank1)。
例如:
C = l m T + m l T C=lm^T + ml^T C=lmT+mlT
是由两条直线 l l l m m m构成,属于退化的二次曲线(Rank=2)。

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值