大气物理基础理论
1. 大气物理的基本概念
1.1 大气的组成
大气是由多种气体组成的混合物,主要包括氮气(N₂,约78%)、氧气(O₂,约21%)、氩气(Ar,约0.93%)和二氧化碳(CO₂,约0.04%)。此外,还有少量的其他气体如氖气(Ne)、氦气(He)、甲烷(CH₄)、氪气(Kr)、氢气(H₂)、氙气(Xe)等。水蒸气(H₂O)的含量在大气中变化较大,取决于温度和湿度条件。
1.2 大气的层结构
大气可以分为多个层,每层的特性不同。主要分为以下几层:
-
对流层:从地面到约10-15公里高度,温度随高度增加而降低,气象现象几乎全部发生在这一层。
-
平流层:从对流层顶到约50公里高度,温度随高度增加而升高,这一层较为稳定,有利于高空飞行。
-
中间层:从平流层顶到约85公里高度,温度随高度增加而降低。
-
热层:从中间层顶到约600公里高度,温度随高度增加而升高,这一层的温度可以达到上千摄氏度。
-
外层:从热层顶向上,没有明确的边界,逐渐过渡到外太空。
1.3 大气的压力和温度
大气压力是指大气对地面或其他物体的垂直压力,通常用百帕(hPa)或毫米汞柱(mmHg)表示。标准大气压定义为1013.25 hPa。大气温度随高度变化,对流层中温度随高度增加而降低,平流层中温度随高度增加而升高。
1.4 大气的运动
大气的运动主要由温度和压力差异驱动,形成各种气象现象。常见的大气运动包括风、气旋、反气旋等。这些运动可以通过流体力学方程描述,如纳维-斯托克斯方程(Navier-Stokes equations)。
1.5 大气的辐射过程
大气中的辐射过程包括太阳辐射的吸收、散射和反射,以及地球表面和大气之间的长波辐射交换。这些过程可以通过辐射传输方程(Radiative Transfer Equation, RTE)来描述。
2. 大气物理的基本方程
2.1 流体力学方程
流体力学方程描述了大气的运动和状态。主要包括连续方程、动量方程和能量方程。
2.1.1 连续方程
连续方程描述了质量守恒,数学形式为:
∂ ρ ∂ t + ∇ ⋅ ( ρ u ) = 0 \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 ∂t∂ρ+∇⋅(ρu)=0
其中, ρ \rho ρ是密度, u \mathbf{u} u是速度矢量, ∇ \nabla ∇是梯度算子。
2.1.2 动量方程
动量方程描述了动量守恒,数学形式为:
∂ ( ρ u ) ∂ t + ∇ ⋅ ( ρ u ⊗ u ) = − ∇ p + ρ g + ∇ ⋅ T \frac{\partial (\rho \mathbf{u})}{\partial t} + \nabla \cdot (\rho \mathbf{u} \otimes \mathbf{u}) = -\nabla p + \rho \mathbf{g} + \nabla \cdot \mathbf{T} ∂t∂(ρu)+∇⋅(ρu⊗u)=−∇p+ρg+∇⋅T
其中, u ⊗ u \mathbf{u} \otimes \mathbf{u} u⊗u是速度矢量的外积, p p p是压力, g \mathbf{g} g是重力加速度, T \mathbf{T} T是应力张量。
2.1.3 能量方程
能量方程描述了能量守恒,数学形式为:
∂ ρ e ∂ t + ∇ ⋅ ( ρ e u ) = ∇ ⋅ ( K ∇ T ) + ρ u ⋅ g + ∇ ⋅ ( T ⋅ u ) \frac{\partial \rho e}{\partial t} + \nabla \cdot (\rho e \mathbf{u}) = \nabla \cdot (\mathbf{K} \nabla T) + \rho \mathbf{u} \cdot \mathbf{g} + \nabla \cdot (\mathbf{T} \cdot \mathbf{u}) ∂t∂ρe+∇⋅(ρeu)=∇⋅(K∇T)+ρu⋅g+∇⋅(T⋅u)
其中, e e e是内能, K \mathbf{K} K是热导率, T T T是温度。
2.2 热力学方程
热力学方程描述了大气中的热量传递和相变过程。主要包括状态方程、相变方程等。
2.2.1 状态方程
状态方程描述了气体的压强、密度和温度之间的关系,数学形式为:
p = ρ R T p = \rho R T p=ρRT
其中, p p p是压强, ρ \rho ρ是密度, R R R是气体常数, T T T是温度。
2.2.2 相变方程
相变方程描述了水蒸气的凝结和蒸发过程,数学形式为:
∂ q v ∂ t + ∇ ⋅ ( q v u ) = S \frac{\partial q_v}{\partial t} + \nabla \cdot (q_v \mathbf{u}) = S ∂t∂qv+∇⋅(qvu)=S
其中, q v q_v qv是水蒸气的质量混合比, u \mathbf{u} u是速度矢量, S S S是凝结和蒸发的源汇项。
2.3 辐射传输方程
辐射传输方程描述了大气中的辐射过程,数学形式为:
d I ( r , s , λ ) d s = − κ ( r , λ ) I ( r , s , λ ) + S ( r , s , λ ) \frac{dI(\mathbf{r}, \mathbf{s}, \lambda)}{ds} = -\kappa(\mathbf{r}, \lambda) I(\mathbf{r}, \mathbf{s}, \lambda) + S(\mathbf{r}, \mathbf{s}, \lambda) dsdI(r,s,λ)=−κ(r,λ)I(r,s,λ)+S(r,s,λ)
其中, I ( r , s , λ ) I(\mathbf{r}, \mathbf{s}, \lambda) I(r,s,λ)是辐射强度, r \mathbf{r} r是位置矢量, s \mathbf{s} s是方向矢量, λ \lambda λ是波长, κ ( r , λ ) \kappa(\mathbf{r}, \lambda) κ(r,λ)是吸收系数, S ( r , s , λ ) S(\mathbf{r}, \mathbf{s}, \lambda) S(r,s,λ)是源函数。
3. 大气物理的数值方法
3.1 有限差分方法
有限差分方法是数值模拟中最常用的方法之一,通过将连续的偏微分方程离散化来求解。基本思想是将空间和时间划分为网格,然后在每个网格点上近似求解方程。
3.1.1 一维有限差分
以一维热传导方程为例,其数学形式为:
∂ T ( x , t ) ∂ t = α ∂ 2 T ( x , t ) ∂ x 2 \frac{\partial T(x, t)}{\partial t} = \alpha \frac{\partial^2 T(x, t)}{\partial x^2} ∂t∂T(x,t)=α∂x2∂2T(x,t)
其中, T ( x , t ) T(x, t) T(x,t)是温度, α \alpha α是热扩散率。离散化后:
T ( x , t + Δ t ) − T ( x , t ) Δ t = α T ( x + Δ x , t ) − 2 T ( x , t ) + T ( x − Δ x , t ) ( Δ x ) 2 \frac{T(x, t + \Delta t) - T(x, t)}{\Delta t} = \alpha \frac{T(x + \Delta x, t) - 2T(x, t) + T(x - \Delta x, t)}{(\Delta x)^2} ΔtT(x,t+Δt)−T(x,t)=α(Δx)2T(x+Δx,t)−2T(x,t)+T(x−Δx,t)
3.1.2 二维有限差分
以二维热传导方程为例,其数学形式为:
∂ T ( x , y , t ) ∂ t = α ( ∂ 2 T ( x , y , t ) ∂ x 2 + ∂ 2 T ( x , y , t ) ∂ y 2 ) \frac{\partial T(x, y, t)}{\partial t} = \alpha \left( \frac{\partial^2 T(x, y, t)}{\partial x^2} + \frac{\partial^2 T(x, y, t)}{\partial y^2} \right) ∂t∂T(x,y,t)=α(∂x2∂2T(x,y,t)+∂y2∂2T(x,y,t))
离散化后:
T ( x , y , t + Δ t ) − T ( x , y , t ) Δ t = α ( T ( x + Δ x , y , t ) − 2 T ( x , y , t ) + T ( x − Δ x , y , t ) ( Δ x ) 2 + T ( x , y + Δ y , t ) − 2 T ( x , y , t ) + T ( x , y − Δ y , t ) ( Δ y ) 2 ) \frac{T(x, y, t + \Delta t) - T(x, y, t)}{\Delta t} = \alpha \left( \frac{T(x + \Delta x, y, t) - 2T(x, y, t) + T(x - \Delta x, y, t)}{(\Delta x)^2} + \frac{T(x, y + \Delta y, t) - 2T(x, y, t) + T(x, y - \Delta y, t)}{(\Delta y)^2} \right) ΔtT(x,y,t+Δt)−T(x,y,t)=α((Δx)2T(x+Δx,y,t)−2T(x,y,t)+T(x−Δx,y,t)+(Δy)2T(x,y+Δy,t)−2T(x,y,t)+T(x,y−Δy,t))
3.2 有限体积方法
有限体积方法是一种基于守恒律的数值方法,适用于求解流体动力学方程。基本思想是将计算区域划分为多个控制体,然后在每个控制体上应用守恒律。
3.2.1 一维有限体积
以一维质量守恒方程为例,其数学形式为:
∂ ρ ( x , t ) ∂ t + ∂ ( ρ u ) ∂ x = 0 \frac{\partial \rho(x, t)}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0 ∂t∂ρ(x,t)+∂x∂(ρu)=0
在控制体 [ x i − Δ x / 2 , x i + Δ x / 2 ] [x_i - \Delta x/2, x_i + \Delta x/2] [xi−Δx/2,xi+Δx/2]上积分:
∂ ∂ t ∫ x i − Δ x / 2 x i + Δ x / 2 ρ ( x , t ) d x + [ ρ u ] x i − Δ x / 2 x i + Δ x / 2 = 0 \frac{\partial}{\partial t} \int_{x_i - \Delta x/2}^{x_i + \Delta x/2} \rho(x, t) \, dx + \left[ \rho u \right]_{x_i - \Delta x/2}^{x_i + \Delta x/2} = 0 ∂t∂∫xi−Δx/2xi+Δx/2ρ(x,t)dx+[ρu]xi−Δx/2xi+Δx/2=0
3.2.2 二维有限体积
以二维质量守恒方程为例,其数学形式为:
∂ ρ ( x , y , t ) ∂ t + ∂ ( ρ u ) ∂ x + ∂ ( ρ v ) ∂ y = 0 \frac{\partial \rho(x, y, t)}{\partial t} + \frac{\partial (\rho u)}{\partial x} + \frac{\partial (\rho v)}{\partial y} = 0 ∂t∂ρ(x,y,t)+∂x∂(ρu)+∂y∂(ρv)=0
在控制体 [ x i − Δ x / 2 , x i + Δ x / 2 ] × [ y j − Δ y / 2 , y j + Δ y / 2 ] [x_i - \Delta x/2, x_i + \Delta x/2] \times [y_j - \Delta y/2, y_j + \Delta y/2] [xi−Δx/2,xi+Δx/2]×[yj−Δy/2,yj+Δy/2]上积分:
∂ ∂ t ∫ x i − Δ x / 2 x i + Δ x / 2 ∫ y j − Δ y / 2 y j + Δ y / 2 ρ ( x , y , t ) d x d y + [ ρ u ] x i − Δ x / 2 x i + Δ x / 2 + [ ρ v ] y j − Δ y / 2 y j + Δ y / 2 = 0 \frac{\partial}{\partial t} \int_{x_i - \Delta x/2}^{x_i + \Delta x/2} \int_{y_j - \Delta y/2}^{y_j + \Delta y/2} \rho(x, y, t) \, dx \, dy + \left[ \rho u \right]_{x_i - \Delta x/2}^{x_i + \Delta x/2} + \left[ \rho v \right]_{y_j - \Delta y/2}^{y_j + \Delta y/2} = 0 ∂t∂∫xi−Δx/2xi+Δx/2∫yj−Δy/2yj+Δy/2ρ(x,y,t)dxdy+[ρu]xi−Δx/2xi+Δx/2+[ρv]yj−Δy/2yj+Δy/2=0
3.3 有限元方法
有限元方法是一种适用于复杂几何区域的数值方法,通过将计算区域划分为多个小的单元,然后在每个单元上应用局部近似来求解方程。
3.3.1 一维有限元
以一维热传导方程为例,其数学形式为:
∂ T ( x , t ) ∂ t = α ∂ 2 T ( x , t ) ∂ x 2 \frac{\partial T(x, t)}{\partial t} = \alpha \frac{\partial^2 T(x, t)}{\partial x^2} ∂t∂T(x,t)=α∂x2∂2T(x,t)
在每个单元上应用局部近似:
T ( x , t ) ≈ ∑ i = 1 N T i ( t ) ϕ i ( x ) T(x, t) \approx \sum_{i=1}^N T_i(t) \phi_i(x) T(x,t)≈i=1∑NTi(t)ϕi(x)
其中, ϕ i ( x ) \phi_i(x) ϕi(x)是基函数, T i ( t ) T_i(t) Ti(t)是节点上的温度。
3.3.2 二维有限元
以二维热传导方程为例,其数学形式为:
∂ T ( x , y , t ) ∂ t = α ( ∂ 2 T ( x , y , t ) ∂ x 2 + ∂ 2 T ( x , y , t ) ∂ y 2 ) \frac{\partial T(x, y, t)}{\partial t} = \alpha \left( \frac{\partial^2 T(x, y, t)}{\partial x^2} + \frac{\partial^2 T(x, y, t)}{\partial y^2} \right) ∂t∂T(x,y,t)=α(∂x2∂2T(x,y,t)+∂y2∂2T(x,y,t))
在每个单元上应用局部近似:
T ( x , y , t ) ≈ ∑ i = 1 N T i ( t ) ϕ i ( x , y ) T(x, y, t) \approx \sum_{i=1}^N T_i(t) \phi_i(x, y) T(x,y,t)≈i=1∑NTi(t)ϕi(x,y)
其中, ϕ i ( x , y ) \phi_i(x, y) ϕi(x,y)是基函数, T i ( t ) T_i(t) Ti(t)是节点上的温度。
3.4 基于Python的数值方法实现
3.4.1 一维有限差分法
以下是一个使用Python实现一维热传导方程的有限差分法的例子:
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
L = 1.0 # 域长度
T_total = 1.0 # 总时间
N = 100 # 空间网格点数
M = 1000 # 时间步数
alpha = 0.01 # 热扩散率
dx = L / N # 空间步长
dt = T_total / M # 时间步长
# 初始化温度场
x = np.linspace(0, L, N)
T = np.zeros(N)
T[0] = 100 # 左边界初始温度
# 定义边界条件
def boundary_conditions(T):
T[0] = 100 # 左边界
T[-1] = 0 # 右边界
return T
# 时间迭代
for t in range(M):
T_new = np.copy(T)
for i in range(1, N-1):
T_new[i] = T[i] + alpha * dt / dx**2 * (T[i+1] - 2*T[i] + T[i-1])
T = boundary_conditions(T_new)
# 绘图
plt.plot(x, T, label='Temperature')
plt.xlabel('Position (x)')
plt.ylabel('Temperature (T)')
plt.title('1D Heat Conduction using Finite Difference Method')
plt.legend()
plt.show()
3.4.2 二维有限差分法
以下是一个使用Python实现二维热传导方程的有限差分法的例子:
import numpy as np
import matplotlib.pyplot as plt
# 参数设置
Lx = 1.0 # x方向域长度
Ly = 1.0 # y方向域长度
T_total = 1.0 # 总时间
Nx = 100 # x方向网格点数
Ny = 100 # y方向网格点数
M = 1000 # 时间步数
alpha = 0.01 # 热扩散率
dx = Lx / Nx # x方向步长
dy = Ly / Ny # y方向步长
dt = T_total / M # 时间步长
# 初始化温度场
x = np.linspace(0, Lx, Nx)
y = np.linspace(0, Ly, Ny)
X, Y = np.meshgrid(x, y)
T = np.zeros((Ny, Nx))
T[0, :] = 100 # 上边界初始温度
# 定义边界条件
def boundary_conditions(T):
T[0, :] = 100 # 上边界
T[-1, :] = 0 # 下边界
T[:, 0] = 0 # 左边界
T[:, -1] = 0 # 右边界
return T
# 时间迭代
for t in range(M):
T_new = np.copy(T)
for i in range(1, Ny-1):
for j in range(1, Nx-1):
T_new[i, j] = T[i, j] + alpha * dt * ( (T[i+1, j] - 2*T[i, j] + T[i-1, j]) / dx**2 + (T[i, j+1] - 2*T[i, j] + T[i, j-1]) / dy**2 )
T = boundary_conditions(T_new)
# 绘图
plt.imshow(T, cmap='hot', interpolation='nearest')
plt.colorbar(label='Temperature (T)')
plt.xlabel('X Position')
plt.ylabel('Y Position')
plt.title('2D Heat Conduction using Finite Difference Method')
plt.show()
3.5 基于MATLAB的数值方法实现
3.5.1 一维有限差分法
以下是一个使用MATLAB实现一维热传导方程的有限差分法的例子:
% 参数设置
L = 1.0; % 域长度
T_total = 1.0; % 总时间
N = 100; % 空间网格点数
M = 1000; % 时间步数
alpha = 0.01; % 热扩散率
dx = L / N; % 空间步长
dt = T_total / M; % 时间步长
% 初始化温度场
x = linspace(0, L, N);
T = zeros(1, N);
T(1) = 100; % 左边界初始温度
% 定义边界条件
boundary_conditions = @(T) [100, T(2:end-1), 0];
% 时间迭代
for t = 1:M
T_new = T;
for i = 2:N-1
T_new(i) = T(i) + alpha * dt / dx^2 * (T(i+1) - 2*T(i) + T(i-1));
end
T = boundary_conditions(T_new);
end
% 绘图
plot(x, T, 'DisplayName', 'Temperature');
xlabel('Position (x)');
ylabel('Temperature (T)');
title('1D Heat Conduction using Finite Difference Method');
legend;
3.5.2 二维有限差分法
以下是一个使用MATLAB实现二维热传导方程的有限差分法的例子:
% 参数设置
Lx = 1.0; % x方向域长度
Ly = 1.0; % y方向域长度
T_total = 1.0; % 总时间
Nx = 100; % x方向网格点数
Ny = 100; % y方向网格点数
M = 1000; % 时间步数
alpha = 0.01; % 热扩散率
dx = Lx / Nx; % x方向步长
dy = Ly / Ny; % y方向步长
dt = T_total / M; % 时间步长
% 初始化温度场
x = linspace(0, Lx, Nx);
y = linspace(0, Ly, Ny);
[X, Y] = meshgrid(x, y);
T = zeros(Ny, Nx);
T(1, :) = 100; % 上边界初始温度
% 定义边界条件
boundary_conditions = @(T) [100 * ones(1, Nx); T(2:end-1, :); zeros(1, Nx)];
T = boundary_conditions(T);
% 时间迭代
for t = 1:M
T_new = T;
for i = 2:Ny-1
for j = 2:Nx-1
T_new(i, j) = T(i, j) + alpha * dt * ( (T(i+1, j) - 2*T(i, j) + T(i-1, j)) / dx^2 + (T(i, j+1) - 2*T(i, j) + T(i, j-1)) / dy^2 );
end
end
T = boundary_conditions(T_new);
end
% 绘图
imagesc(x, y, T);
colorbar;
xlabel('X Position');
ylabel('Y Position');
title('2D Heat Conduction using Finite Difference Method');
3.6 数值方法的选择和应用
在选择数值方法时,需要考虑问题的复杂性和计算资源的可用性。常见的数值方法有有限差分法、有限体积法和有限元法,每种方法都有其适用的场景:
-
有限差分法:适用于简单几何形状和规则网格,计算效率较高。
-
有限体积法:适用于守恒律问题,如流体力学方程,能够较好地保持守恒性质。
-
有限元法:适用于复杂几何形状和不规则网格,能够处理多种边界条件和非线性问题。
在实际应用中,这些方法可以结合使用,以提高计算精度和效率。例如,对于复杂的大气流动问题,可以使用有限体积法来处理流体动力学方程,同时使用有限元法来处理热传导和辐射过程。
3.7 数值方法的验证和优化
数值方法的验证通常包括与解析解的比较和网格收敛性分析。为了提高计算效率和精度,可以选择合适的数值格式和时间步长,同时进行并行计算和 preconditioning 等优化技术。
3.7.1 与解析解的比较
对于一些经典问题,如一维热传导方程,可以通过与解析解进行比较来验证数值方法的准确性。例如,一维热传导方程的解析解为:
T ( x , t ) = T 0 + ( T 1 − T 0 ) ( 1 2 + 1 2 erf ( x 2 α t ) ) T(x, t) = T_0 + (T_1 - T_0) \left( \frac{1}{2} + \frac{1}{2} \text{erf} \left( \frac{x}{2 \sqrt{\alpha t}} \right) \right) T(x,t)=T0+(T1−T0)(21+21erf(2αtx))
其中, erf \text{erf} erf是误差函数, T 0 T_0 T0和 T 1 T_1 T1是初始和边界温度。
3.7.2 网格收敛性分析
网格收敛性分析是通过逐渐减小网格步长来观察数值解的变化,以确定数值解的稳定性。通常,可以通过计算不同网格步长下的解的差异来评估收敛性。
3.8 数值模拟在大气物理中的应用
数值模拟在大气物理中应用广泛,包括天气预报、气候研究、空气污染扩散模型等。通过数值方法,可以模拟大气中的各种现象,如温度分布、风场、降水等,从而提供科学依据和预测手段。
3.8.1 天气预报
天气预报模型通常使用有限体积法来求解流体力学方程和热力学方程,通过初始和边界条件来预测大气中的各种气象现象。例如,全球天气预报模型(如GFS)和区域天气预报模型(如WRF)都采用了数值方法来提高预报精度。
3.8.2 气候研究
气候研究模型通过长期模拟大气和海洋的相互作用,来预测未来的气候变化。这些模型通常使用有限差分法和有限体积法,结合高分辨率的数据来提高模拟的准确性。例如,通用环流模型(GCM)可以模拟全球气候系统的变化。
3.8.3 空气污染扩散模型
空气污染扩散模型通过模拟污染物质在大气中的传输过程,来预测污染物的分布和扩散。这些模型通常使用有限元法和有限体积法,结合地形和气象数据来提高预测的准确性。例如,CALPUFF 模型可以模拟复杂地形下的污染物扩散。
3.9 总结
数值方法在大气物理中起着至关重要的作用,通过这些方法可以有效地模拟大气中的各种现象。有限差分法、有限体积法和有限元法各有其特点和适用范围,选择合适的方法可以提高计算效率和精度。数值模拟不仅在天气预报和气候研究中有着广泛的应用,还在空气污染扩散等环境问题中提供了有力的工具。