空气质量仿真软件:AERMOD_(8).地形数据处理

地形数据处理

在空气质量仿真软件中,地形数据的处理是至关重要的一步。地形数据不仅影响气象参数的计算,还直接影响污染物的扩散和传输。AERMOD软件在处理地形数据时,需要考虑地形的高度、坡度和方向等因素,以确保仿真结果的准确性和可靠性。本节将详细介绍如何在AERMOD中处理地形数据,包括数据的获取、预处理、输入文件的生成以及地形数据对仿真结果的影响。

在这里插入图片描述

1. 地形数据的获取

地形数据的获取通常有多种途径,包括但不限于:

  • 地形数据库:从国家或区域的地形数据库中获取地形数据,如美国的国家地形数据库(NED)。

  • GIS软件:使用地理信息系统(GIS)软件,如ArcGIS或QGIS,从地图上提取地形数据。

  • 现场测量:通过现场测量获取精确的地形数据,适用于小范围的高精度需求。

获取地形数据后,需要将其转换为AERMOD所需的格式。AERMOD接受的地形数据格式主要为.TERR文件,该文件包含地形高度信息。

2. 地形数据的预处理

地形数据的预处理主要包括数据清洗、格式转换和数据验证等步骤。以下是一些常见的预处理方法:

  • 数据清洗:去除数据中的异常值和缺失值。可以使用Python等编程语言进行数据清洗。

  • 格式转换:将地形数据转换为AERMOD所需的格式。通常需要将地形数据的高程信息转换为.TERR文件。

  • 数据验证:确保地形数据的完整性和准确性。可以通过可视化工具检查地形数据的分布和连续性。

2.1 数据清洗

假设我们从GIS软件中导出了一组地形数据,这些数据可能存在一些异常值和缺失值。我们可以使用Python进行数据清洗。


import pandas as pd

import numpy as np



# 读取地形数据

terrain_data = pd.read_csv('terrain_data.csv')



# 查看数据的基本信息

print(terrain_data.info())



# 去除异常值和缺失值

terrain_data = terrain_data.dropna()  # 去除缺失值

terrain_data = terrain_data[(terrain_data['Elevation'] >= 0) & (terrain_data['Elevation'] <= 5000)]  # 去除异常值



# 保存清洗后的数据

terrain_data.to_csv('cleaned_terrain_data.csv', index=False)

2.2 格式转换

将清洗后的地形数据转换为AERMOD所需的.TERR文件格式。.TERR文件的格式要求如下:

  • 每行包含一个地形点的坐标(经纬度)和高程信息。

  • 文件的标题行应包含地形点的数量和文件名称。

以下是一个Python脚本,用于将清洗后的地形数据转换为.TERR文件。


import pandas as pd



# 读取清洗后的地形数据

cleaned_terrain_data = pd.read_csv('cleaned_terrain_data.csv')



# 确保数据列名正确

cleaned_terrain_data = cleaned_terrain_data[['Longitude', 'Latitude', 'Elevation']]



# 生成.TERR文件

with open('terrain_data.TERR', 'w') as f:

    f.write(f"{len(cleaned_terrain_data)}\n")  # 写入地形点的数量

    f.write("Terrain Data for AERMOD\n")  # 写入文件名称

    for index, row in cleaned_terrain_data.iterrows():

        f.write(f"{row['Longitude']} {row['Latitude']} {row['Elevation']}\n")  # 写入每个地形点的坐标和高程信息



# 验证生成的.TERR文件

with open('terrain_data.TERR', 'r') as f:

    print(f.read())

2.3 数据验证

数据验证是确保地形数据准确性的关键步骤。我们可以通过可视化工具检查地形数据的分布和连续性。以下是一个使用Matplotlib进行地形数据可视化的例子。


import matplotlib.pyplot as plt

import pandas as pd



# 读取生成的.TERR文件

terrain_data = pd.read_csv('terrain_data.TERR', skiprows=2, sep=' ', names=['Longitude', 'Latitude', 'Elevation'])



# 绘制地形高度分布图

plt.figure(figsize=(10, 6))

plt.scatter(terrain_data['Longitude'], terrain_data['Latitude'], c=terrain_data['Elevation'], cmap='terrain')

plt.colorbar(label='Elevation (m)')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.title('Terrain Elevation Distribution')

plt.show()

3. 地形数据的输入

在AERMOD中,地形数据的输入是通过.TERR文件实现的。以下是AERMOD中输入地形数据的步骤:

  1. 创建地形数据文件:将地形数据保存为.TERR文件。

  2. 配置AERMOD输入文件:在AERMOD的输入文件中指定地形数据文件的路径。

3.1 创建地形数据文件

在上一步中,我们已经生成了terrain_data.TERR文件。确保该文件的格式正确,可以使用以下命令进行检查:


head -n 5 terrain_data.TERR

输出应类似于:


5

Terrain Data for AERMOD

-123.456 34.567 100.0

-123.457 34.568 105.0

-123.458 34.569 110.0

3.2 配置AERMOD输入文件

在AERMOD的输入文件中,需要指定地形数据文件的路径。以下是一个示例输入文件的片段:


* AERMOD INPUT FILE

* VERSION 19010

* PROJECT: Example Project

* 

* METEOROLOGICAL DATA

* 

* TERRAIN DATA

TERRNAME terrain_data.TERR

* 

* SOURCE DATA

* 

* RECEPTOR DATA

* 

* OUTPUT DATA

* 

* END OF FILE

4. 地形数据对仿真结果的影响

地形数据对空气质量仿真结果的影响主要体现在以下几个方面:

  • 风速和风向:地形的高低变化会影响局部风速和风向,进而影响污染物的扩散。

  • 湍流强度:复杂的地形会增加湍流强度,影响污染物的垂直扩散。

  • 地形障碍物:地形障碍物(如山丘、建筑物)会阻挡污染物的传输路径,导致污染物在某些区域积聚。

4.1 风速和风向的影响

地形的变化会导致局部风速和风向的改变。例如,山丘会形成风影区,导致背风侧的风速降低,而迎风侧的风速增加。这可以通过AERMOD的仿真结果进行验证。

4.2 湍流强度的影响

复杂的地形会增加大气中的湍流强度,导致污染物在垂直方向上的扩散更加剧烈。这可以在AERMOD的输出文件中查看垂直扩散参数的变化。

4.3 地形障碍物的影响

地形障碍物(如山丘、建筑物)会阻挡污染物的传输路径,导致污染物在某些区域积聚。这可以通过AERMOD的浓度分布图进行验证。


import matplotlib.pyplot as plt

import pandas as pd



# 读取AERMOD输出的浓度分布数据

concentration_data = pd.read_csv('concentration_output.csv', skiprows=1, sep=' ', names=['X', 'Y', 'Concentration'])



# 绘制浓度分布图

plt.figure(figsize=(10, 6))

plt.scatter(concentration_data['X'], concentration_data['Y'], c=concentration_data['Concentration'], cmap='hot')

plt.colorbar(label='Concentration (ug/m^3)')

plt.xlabel('X Coordinate (m)')

plt.ylabel('Y Coordinate (m)')

plt.title('Concentration Distribution with Terrain Influence')

plt.show()

5. 地形数据处理的高级技巧

在处理复杂地形数据时,可以使用一些高级技巧来提高数据处理的效率和准确性。

  • 网格化处理:将地形数据转换为网格化数据,便于进行空间分析。

  • 三维地形建模:使用三维地形建模工具,如GRASS GIS,生成更加精确的地形模型。

  • 数据插值:使用插值方法填补地形数据中的空白点,提高数据的连续性。

5.1 网格化处理

将地形数据转换为网格化数据,可以使用Python中的scipy库进行插值。


import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import griddata

import pandas as pd



# 读取地形数据

terrain_data = pd.read_csv('cleaned_terrain_data.csv')



# 提取经纬度和高程数据

lon = terrain_data['Longitude'].values

lat = terrain_data['Latitude'].values

elevation = terrain_data['Elevation'].values



# 定义网格的分辨率

grid_resolution = 0.01

lon_grid = np.arange(min(lon), max(lon), grid_resolution)

lat_grid = np.arange(min(lat), max(lat), grid_resolution)



# 生成网格

lon_grid, lat_grid = np.meshgrid(lon_grid, lat_grid)



# 使用插值方法生成网格化高程数据

elevation_grid = griddata((lon, lat), elevation, (lon_grid, lat_grid), method='linear')



# 绘制网格化地形图

plt.figure(figsize=(10, 6))

plt.contourf(lon_grid, lat_grid, elevation_grid, cmap='terrain')

plt.colorbar(label='Elevation (m)')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.title('Gridded Terrain Elevation')

plt.show()

5.2 三维地形建模

使用GRASS GIS进行三维地形建模,可以生成更加精确的地形模型。以下是一个GRASS GIS命令示例:


# 启动GRASS GIS

grass -text



# 导入地形数据

v.in.ascii input=terrain_data.TERR output=terrain_data format=point separator=space



# 生成三维地形模型

v.surf.rst input=terrain_data elevation=elevation surface=surface tension=15 smooth=1



# 导出三维地形模型

r.out.gdal input=elevation output=elevation.tif format=GTiff



# 退出GRASS GIS

exit

5.3 数据插值

在地形数据中,可能存在一些空白点。使用插值方法填补这些空白点,可以提高数据的连续性。以下是一个使用Python进行数据插值的例子:


import numpy as np

import matplotlib.pyplot as plt

from scipy.interpolate import griddata

import pandas as pd



# 读取地形数据

terrain_data = pd.read_csv('cleaned_terrain_data.csv')



# 提取经纬度和高程数据

lon = terrain_data['Longitude'].values

lat = terrain_data['Latitude'].values

elevation = terrain_data['Elevation'].values



# 定义插值点

lon_interpolate = np.linspace(min(lon), max(lon), 100)

lat_interpolate = np.linspace(min(lat), max(lat), 100)

lon_interpolate, lat_interpolate = np.meshgrid(lon_interpolate, lat_interpolate)



# 使用插值方法生成高程数据

elevation_interpolate = griddata((lon, lat), elevation, (lon_interpolate, lat_interpolate), method='linear')



# 保存插值后的数据

interpolated_terrain = pd.DataFrame({

    'Longitude': lon_interpolate.flatten(),

    'Latitude': lat_interpolate.flatten(),

    'Elevation': elevation_interpolate.flatten()

})

interpolated_terrain.to_csv('interpolated_terrain_data.csv', index=False)



# 绘制插值后的地形图

plt.figure(figsize=(10, 6))

plt.contourf(lon_interpolate, lat_interpolate, elevation_interpolate, cmap='terrain')

plt.colorbar(label='Elevation (m)')

plt.xlabel('Longitude')

plt.ylabel('Latitude')

plt.title('Interpolated Terrain Elevation')

plt.show()

6. 实例分析

为了更好地理解地形数据处理的全过程,我们通过一个实例进行分析。假设我们需要对一个山区的空气质量进行仿真,以下是具体步骤:

  1. 获取地形数据:从国家地形数据库(NED)中获取地形数据。

  2. 预处理地形数据:使用Python进行数据清洗和格式转换。

  3. 输入地形数据:在AERMOD输入文件中指定地形数据文件的路径。

  4. 运行仿真:使用AERMOD进行空气质量仿真。

  5. 分析结果:通过可视化工具分析仿真结果,验证地形数据的影响。

6.1 获取地形数据

从国家地形数据库(NED)中下载地形数据,保存为terrain_data.csv文件。

6.2 预处理地形数据

使用Python进行数据清洗和格式转换。


import pandas as pd

import numpy as np



# 读取地形数据

terrain_data = pd.read_csv('terrain_data.csv')



# 去除异常值和缺失值

terrain_data = terrain_data.dropna()

terrain_data = terrain_data[(terrain_data['Elevation'] >= 0) & (terrain_data['Elevation'] <= 5000)]



# 生成.TERR文件

with open('terrain_data.TERR', 'w') as f:

    f.write(f"{len(terrain_data)}\n")

    f.write("Terrain Data for AERMOD\n")

    for index, row in terrain_data.iterrows():

        f.write(f"{row['Longitude']} {row['Latitude']} {row['Elevation']}\n")

6.3 输入地形数据

在AERMOD输入文件中指定地形数据文件的路径。


* AERMOD INPUT FILE

* VERSION 19010

* PROJECT: Mountain Air Quality Simulation

* 

* METEOROLOGICAL DATA

* 

* TERRAIN DATA

TERRNAME terrain_data.TERR

* 

* SOURCE DATA

* 

* RECEPTOR DATA

* 

* OUTPUT DATA

* 

* END OF FILE

6.4 运行仿真

使用AERMOD进行空气质量仿真。假设仿真结果保存为concentration_output.csv文件。

6.5 分析结果

通过可视化工具分析仿真结果,验证地形数据的影响。


import matplotlib.pyplot as plt

import pandas as pd



# 读取AERMOD输出的浓度分布数据

concentration_data = pd.read_csv('concentration_output.csv', skiprows=1, sep=' ', names=['X', 'Y', 'Concentration'])



# 绘制浓度分布图

plt.figure(figsize=(10, 6))

plt.scatter(concentration_data['X'], concentration_data['Y'], c=concentration_data['Concentration'], cmap='hot')

plt.colorbar(label='Concentration (ug/m^3)')

plt.xlabel('X Coordinate (m)')

plt.ylabel('Y Coordinate (m)')

plt.title('Concentration Distribution with Terrain Influence')

plt.show()

通过上述步骤,我们可以看到地形数据对污染物浓度分布的显著影响。在山区,污染物在背风侧的浓度较高,而在迎风侧的浓度较低,这与地形的高低变化一致。

结束

以上是关于地形数据处理的详细技术教程。通过数据获取、预处理、输入配置以及结果分析,我们可以有效地处理地形数据,提高空气质量仿真软件AERMOD的仿真精度和可靠性。希望本教程对您的二次开发工作有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值