空气质量仿真软件:CALPUFF (California PUFF Model)_(13).CALPUFF的高级应用技巧

CALPUFF的高级应用技巧

1. 模型参数优化

1.1 参数敏感性分析

参数敏感性分析是评估不同参数对模型输出结果影响的重要手段。在CALPUFF中,可以通过改变某些关键参数的值来观察空气质量预测结果的变化,从而确定哪些参数对模型结果有较大影响。这有助于优化模型参数,提高预测的准确性。

在这里插入图片描述

1.1.1 敏感性参数选择

CALPUFF中常见的敏感性参数包括但不限于:

  • 排放源参数:如排放速率、排放高度、排气管直径等。

  • 气象参数:如风速、风向、大气稳定度等。

  • 地形参数:如地形高度、地形粗糙度等。

  • 化学参数:如化学反应速率常数、化学物质初始浓度等。

1.1.2 敏感性分析方法

常用的敏感性分析方法有:

  • 单因素敏感性分析:每次只改变一个参数的值,观察其对模型输出的影响。

  • 多因素敏感性分析:同时改变多个参数的值,评估它们的综合影响。

1.1.3 实例分析

假设我们要评估排放源高度对PM2.5浓度预测的影响。具体步骤如下:

  1. 设置基准参数:首先,设置一组基准参数。

  2. 改变参数值:逐步改变排放源高度,运行模型并记录结果。

  3. 结果对比:对比不同排放源高度下的PM2.5浓度预测结果,分析变化趋势。

1.2 参数优化算法

参数优化算法可以帮助我们找到一组最优的参数值,以提高模型的预测精度。常用的优化算法包括遗传算法、粒子群优化算法等。

1.2.1 遗传算法

遗传算法是一种基于自然选择和遗传学原理的优化算法。它通过模拟生物进化过程中的选择、交叉和变异操作,逐步优化参数。

实例代码

以下是一个使用Python实现的遗传算法优化CALPUFF参数的示例代码:


# 导入所需库

import numpy as np

from deap import base, creator, tools, algorithms



# 定义问题

creator.create("FitnessMax", base.Fitness, weights=(1.0,))

creator.create("Individual", list, fitness=creator.FitnessMax)



# 初始化工具箱

toolbox = base.Toolbox()

toolbox.register("attr_float", np.random.uniform, 0, 100)

toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=3)

toolbox.register("population", tools.initRepeat, list, toolbox.individual)



# 定义评估函数

def evaluate(individual):

    # 个体参数

    emission_rate, emission_height, exhaust_diameter = individual

    

    # 运行CALPUFF模型并获取预测结果

    # 这里假设已经有一个函数run_calpuff来运行模型

    result = run_calpuff(emission_rate, emission_height, exhaust_diameter)

    

    # 评估预测结果的误差

    error = calculate_error(result)

    

    # 返回适应度值

    return -error,



# 注册评估函数

toolbox.register("evaluate", evaluate)



# 注册遗传算法操作

toolbox.register("mate", tools.cxBlend, alpha=0.5)

toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=10, indpb=0.2)

toolbox.register("select", tools.selTournament, tournsize=3)



# 定义遗传算法参数

population_size = 100

num_generations = 50

crossover_probability = 0.7

mutation_probability = 0.2



# 初始化种群

population = toolbox.population(n=population_size)



# 运行遗传算法

for gen in range(num_generations):

    offspring = algorithms.varAnd(population, toolbox, crossover_probability, mutation_probability)

    fits = toolbox.map(toolbox.evaluate, offspring)

    for fit, ind in zip(fits, offspring):

        ind.fitness.values = fit

    population = toolbox.select(offspring, k=len(population))



# 获取最优个体

best_individual = tools.selBest(population, k=1)[0]

print("最优参数:", best_individual)

1.3 参数优化案例

1.3.1 案例描述

假设我们要优化一个工业区的SO2排放参数,以最小化其对周边居民区的影响。我们有以下参数需要优化:

  • 排放速率:单位为kg/h

  • 排放高度:单位为m

  • 排气管直径:单位为m

1.3.2 案例实现
  1. 数据准备:收集工业区的排放数据和气象数据。

  2. 模型运行:使用CALPUFF模型进行空气质量预测。

  3. 优化过程:使用遗传算法优化参数。

数据样例

# 模拟排放数据

emission_data = {

    "rate": 100,  # kg/h

    "height": 50,  # m

    "diameter": 1  # m

}



# 模拟气象数据

meteorological_data = {

    "wind_speed": 5,  # m/s

    "wind_direction": 180,  # degrees

    "stability_class": "D"  # 大气稳定度

}

优化代码

# 导入所需库

import numpy as np

from deap import base, creator, tools, algorithms



# 定义问题

creator.create("FitnessMin", base.Fitness, weights=(-1.0,))

creator.create("Individual", list, fitness=creator.FitnessMin)



# 初始化工具箱

toolbox = base.Toolbox()

toolbox.register("attr_float", np.random.uniform, 0, 100)

toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=3)

toolbox.register("population", tools.initRepeat, list, toolbox.individual)



# 定义评估函数

def evaluate(individual):

    # 个体参数

    emission_rate, emission_height, exhaust_diameter = individual

    

    # 运行CALPUFF模型并获取预测结果

    result = run_calpuff(emission_rate, emission_height, exhaust_diameter, meteorological_data)

    

    # 评估预测结果的误差

    error = calculate_error(result)

    

    # 返回适应度值

    return error,



# 注册评估函数

toolbox.register("evaluate", evaluate)



# 注册遗传算法操作

toolbox.register("mate", tools.cxBlend, alpha=0.5)

toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=10, indpb=0.2)

toolbox.register("select", tools.selTournament, tournsize=3)



# 定义遗传算法参数

population_size = 100

num_generations = 50

crossover_probability = 0.7

mutation_probability = 0.2



# 初始化种群

population = toolbox.population(n=population_size)



# 运行遗传算法

for gen in range(num_generations):

    offspring = algorithms.varAnd(population, toolbox, crossover_probability, mutation_probability)

    fits = toolbox.map(toolbox.evaluate, offspring)

    for fit, ind in zip(fits, offspring):

        ind.fitness.values = fit

    population = toolbox.select(offspring, k=len(population))



# 获取最优个体

best_individual = tools.selBest(population, k=1)[0]

print("最优参数:", best_individual)

2. 高级气象数据处理

2.1 气象数据插值

气象数据插值是将不规则分布的气象观测数据转换为规则网格数据的过程。这有助于提高CALPUFF模型的输入数据质量,从而提高预测精度。

2.1.1 常用插值方法

常用的气象数据插值方法包括:

  • 最近邻插值:选择最近的观测点数据。

  • 线性插值:通过线性插值方法估计缺失数据。

  • 克里金插值:通过统计方法估计缺失数据。

2.1.2 实例分析

假设我们有一组气象观测数据,需要将其插值到规则网格上。具体步骤如下:

  1. 数据准备:收集气象观测数据。

  2. 插值处理:使用克里金插值方法进行插值。

  3. 结果验证:验证插值结果的准确性。

数据样例

# 模拟气象观测数据

observations = [

    (0, 0, 5),  # (经度, 纬度, 风速)

    (1, 0, 6),

    (0, 1, 4),

    (1, 1, 7)

]



# 规则网格点

grid_points = [

    (0.5, 0.5),

    (0.5, 1.5),

    (1.5, 0.5),

    (1.5, 1.5)

]

插值代码

# 导入所需库

import numpy as np

from scipy.interpolate import Rbf



# 提取观测数据

lon = [point[0] for point in observations]

lat = [point[1] for point in observations]

wind_speed = [point[2] for point in observations]



# 创建径向基函数插值器

rbf_interpolator = Rbf(lon, lat, wind_speed, function='linear')



# 插值到规则网格点

interpolated_wind_speed = [rbf_interpolator(x, y) for x, y in grid_points]



# 打印插值结果

print("插值后的风速:", interpolated_wind_speed)

2.2 气象数据融合

气象数据融合是将多个来源的气象数据整合为一个高精度的数据集。这有助于提高CALPUFF模型的输入数据质量,从而提高预测精度。

2.2.1 常用融合方法

常用的气象数据融合方法包括:

  • 加权平均:根据数据来源的可靠性进行加权平均。

  • 卡尔曼滤波:通过卡尔曼滤波方法融合数据。

  • 数据同化:通过数据同化方法融合数据。

2.2.2 实例分析

假设我们有两个来源的气象数据,需要将其融合为一个高精度的数据集。具体步骤如下:

  1. 数据准备:收集两个来源的气象数据。

  2. 数据融合:使用加权平均方法进行数据融合。

  3. 结果验证:验证融合结果的准确性。

数据样例

# 模拟两个来源的气象数据

data_source_1 = [

    (0, 0, 5),  # (经度, 纬度, 风速)

    (1, 0, 6),

    (0, 1, 4),

    (1, 1, 7)

]



data_source_2 = [

    (0, 0, 4.5),  # (经度, 纬度, 风速)

    (1, 0, 6.5),

    (0, 1, 4.5),

    (1, 1, 7.5)

]



# 权重

weights = [0.7, 0.3]

融合代码

# 导入所需库

import numpy as np



# 提取数据

lon_1 = [point[0] for point in data_source_1]

lat_1 = [point[1] for point in data_source_1]

wind_speed_1 = [point[2] for point in data_source_1]



lon_2 = [point[0] for point in data_source_2]

lat_2 = [point[1] for point in data_source_2]

wind_speed_2 = [point[2] for point in data_source_2]



# 检查数据一致性

if not (np.array_equal(lon_1, lon_2) and np.array_equal(lat_1, lat_2)):

    raise ValueError("两个数据源的经度和纬度不一致")



# 融合风速数据

fused_wind_speed = [weights[0] * ws1 + weights[1] * ws2 for ws1, ws2 in zip(wind_speed_1, wind_speed_2)]



# 打印融合结果

print("融合后的风速:", fused_wind_speed)

3. 高级地形数据处理

3.1 地形数据预处理

地形数据预处理是将原始地形数据转换为CALPUFF模型所需的格式。这有助于提高模型的输入数据质量,从而提高预测精度。

3.1.1 常用预处理方法

常用的地形数据预处理方法包括:

  • 数据清洗:去除无效或错误的数据。

  • 数据重采样:将高分辨率数据重采样为低分辨率数据。

  • 数据格式转换:将地形数据转换为CALPUFF支持的格式。

3.1.2 实例分析

假设我们有一组高分辨率的地形数据,需要将其重采样为低分辨率数据。具体步骤如下:

  1. 数据准备:收集高分辨率地形数据。

  2. 数据重采样:使用重采样方法将数据转换为低分辨率。

  3. 结果验证:验证重采样结果的准确性。

数据样例

# 模拟高分辨率地形数据

high_res_terrain = np.array([

    [10, 20, 30, 40],

    [15, 25, 35, 45],

    [20, 30, 40, 50],

    [25, 35, 45, 55]

])



# 重采样后的网格大小

new_shape = (2, 2)

重采样代码

# 导入所需库

import numpy as np

from scipy.ndimage import zoom



# 重采样地形数据

low_res_terrain = zoom(high_res_terrain, (new_shape[0] / high_res_terrain.shape[0], new_shape[1] / high_res_terrain.shape[1]), order=1)



# 打印重采样结果

print("重采样后的地形数据:", low_res_terrain)

3.2 地形数据融合

地形数据融合是将多个来源的地形数据整合为一个高精度的数据集。这有助于提高CALPUFF模型的输入数据质量,从而提高预测精度。

3.2.1 常用融合方法

常用的地形数据融合方法包括:

  • 加权平均:根据数据来源的可靠性进行加权平均。

  • 卡尔曼滤波:通过卡尔曼滤波方法融合数据。

  • 数据同化:通过数据同化方法融合数据。

3.2.2 实例分析

假设我们有两个来源的地形数据,需要将其融合为一个高精度的数据集。具体步骤如下:

  1. 数据准备:收集两个来源的地形数据。

  2. 数据融合:使用加权平均方法进行数据融合。

  3. 结果验证:验证融合结果的准确性。

数据样例

# 模拟两个来源的地形数据

terrain_data_1 = np.array([

    [10, 20],

    [15, 25]

])



terrain_data_2 = np.array([

    [12, 22],

    [17, 27]

])



# 权重

weights = [0.6, 0.4]

融合代码

# 导入所需库

import numpy as np



# 检查数据一致性

if terrain_data_1.shape != terrain_data_2.shape:

    raise ValueError("两个数据源的地形数据形状不一致")



# 融合地形数据

fused_terrain = weights[0] * terrain_data_1 + weights[1] * terrain_data_2



# 打印融合结果

print("融合后的地形数据:", fused_terrain)

4. 高级化学数据处理

4.1 化学数据预处理

化学数据预处理是将原始化学数据转换为CALPUFF模型所需的格式。这有助于提高模型的输入数据质量,从而提高预测精度。

4.1.1 常用预处理方法

常用的化学数据预处理方法包括:

  • 数据清洗:去除无效或错误的数据。

  • 数据重采样:将高分辨率数据重采样为低分辨率数据。

  • 数据格式转换:将化学数据转换为CALPUFF支持的格式。

4.1.2 实例分析

假设我们有一组高分辨率的化学数据,需要将其重采样为低分辨率数据。具体步骤如下:

  1. 数据准备:收集高分辨率化学数据。

  2. 数据重采样:使用重采样方法将数据转换为低分辨率。

  3. 结果验证:验证重采样结果的准确性。

数据样例

# 模拟高分辨率化学数据

high_res_chemical = np.array([

    [0.1, 0.2, 0.3, 0.4],

    [0.15, 0.25, 0.35, 0.45],

    [0.2, 0.3, 0.4, 0.5],

    [0.25, 0.35, 0.45, 0.55]

])



# 重采样后的网格大小

new_shape = (2, 2)

重采样代码

# 导入所需库

import numpy as np

from scipy.ndimage import zoom



# 重采样化学数据

low_res_chemical = zoom(high_res_chemical, (new_shape[0] / high_res_chemical.shape[0], new_shape[1] / high_res_chemical.shape[1]), order=1)



# 打印重采样结果

print("重采样后的化学数据:", low_res_chemical)

4.2 化学数据融合

化学数据融合是将多个来源的化学数据整合为一个高精度的数据集。这有助于提高CALPUFF模型的输入数据质量,从而提高预测精度。

4.2.1 常用融合方法

常用的化学数据融合方法包括:

  • 加权平均:根据数据来源的可靠性进行加权平均。

  • 卡尔曼滤波:通过卡尔曼滤波方法融合数据。

  • 数据同化:通过数据同化方法融合数据。

4.2.2 实例分析

假设我们有两个来源的化学数据,需要将其融合为一个高精度的数据集。具体步骤如下:

  1. 数据准备:收集两个来源的化学数据。

  2. 数据融合:使用加权平均方法进行数据融合。

  3. 结果验证:验证融合结果的准确性。

数据样例

# 模拟两个来源的化学数据

chemical_data_1 = np.array([

    [0.1, 0.2],

    [0.15, 0.25]

])



chemical_data_2 = np.array([

    [0.12, 0.22],

    [0.17, 0.27]

])



# 权重

weights = [0.6, 0.4]

融合代码

# 导入所需库

import numpy as np



# 检查数据一致性

if chemical_data_1.shape != chemical_data_2.shape:

    raise ValueError("两个数据源的化学数据形状不一致")



# 融合化学数据

fused_chemical = weights[0] * chemical_data_1 + weights[1] * chemical_data_2



# 打印融合结果

print("融合后的化学数据:", fused_chemical)

4.3 化学数据的高级处理技巧

在进行化学数据处理时,除了基本的预处理和融合方法,还有一些高级技巧可以帮助进一步提高数据质量。

4.3.1 数据归一化

数据归一化可以将不同量级的数据转换到同一量级,从而避免某些参数对模型的影响过大。常见的归一化方法包括最小-最大归一化、Z-score归一化等。

实例代码

# 导入所需库

import numpy as np



# 模拟化学数据

chemical_data = np.array([0.1, 0.2, 0.3, 0.4, 0.5])



# 最小-最大归一化

def min_max_normalize(data):

    min_val = np.min(data)

    max_val = np.max(data)

    return (data - min_val) / (max_val - min_val)



# Z-score归一化

def z_score_normalize(data):

    mean = np.mean(data)

    std = np.std(data)

    return (data - mean) / std



# 归一化化学数据

normalized_chemical_min_max = min_max_normalize(chemical_data)

normalized_chemical_z_score = z_score_normalize(chemical_data)



# 打印归一化结果

print("最小-最大归一化后的化学数据:", normalized_chemical_min_max)

print("Z-score归一化后的化学数据:", normalized_chemical_z_score)

4.3.2 数据去噪

数据去噪可以去除化学数据中的噪声,提高数据的纯净度和质量。常用的去噪方法包括移动平均、低通滤波等。

实例代码

# 导入所需库

import numpy as np

import scipy.signal as signal



# 模拟化学数据

chemical_data = np.array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])



# 移动平均去噪

def moving_average(data, window_size):

    return np.convolve(data, np.ones(window_size) / window_size, mode='valid')



# 低通滤波去噪

def low_pass_filter(data, cutoff, fs, order=5):

    nyquist = 0.5 * fs

    normal_cutoff = cutoff / nyquist

    b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)

    return signal.filtfilt(b, a, data)



# 去噪化学数据

window_size = 3

denoised_chemical_moving_average = moving_average(chemical_data, window_size)



cutoff = 0.1

fs = 1.0

denoised_chemical_low_pass = low_pass_filter(chemical_data, cutoff, fs)



# 打印去噪结果

print("移动平均去噪后的化学数据:", denoised_chemical_moving_average)

print("低通滤波去噪后的化学数据:", denoised_chemical_low_pass)

4.4 化学数据的综合应用

在实际应用中,化学数据的预处理、融合和高级处理技巧往往需要综合使用,以达到最佳效果。以下是一个综合应用的实例。

4.4.1 案例描述

假设我们要优化一个城市的PM2.5浓度预测,需要处理多个来源的化学数据。具体步骤如下:

  1. 数据准备:收集多个来源的化学数据。

  2. 数据预处理:清洗数据、归一化数据。

  3. 数据融合:使用加权平均方法融合数据。

  4. 数据去噪:使用低通滤波方法去噪。

  5. 结果验证:验证处理后的数据对模型预测的影响。

数据样例

# 模拟多个来源的化学数据

chemical_data_source_1 = np.array([0.1, 0.2, 0.3, 0.4, 0.5])

chemical_data_source_2 = np.array([0.12, 0.22, 0.32, 0.42, 0.52])

chemical_data_source_3 = np.array([0.15, 0.25, 0.35, 0.45, 0.55])



# 权重

weights = [0.4, 0.3, 0.3]

综合处理代码

# 导入所需库

import numpy as np

import scipy.signal as signal



# 数据预处理

def preprocess_data(data):

    # 清洗数据

    data = data[data != 0]  # 假设0值为无效数据

    # 归一化数据

    normalized_data = z_score_normalize(data)

    return normalized_data



# 数据融合

def fuse_data(data_list, weights):

    # 检查数据一致性

    if not all(data.shape == data_list[0].shape for data in data_list):

        raise ValueError("数据源的形状不一致")

    # 融合数据

    fused_data = sum(weight * data for weight, data in zip(weights, data_list))

    return fused_data



# 数据去噪

def denoise_data(data, cutoff, fs, order=5):

    return low_pass_filter(data, cutoff, fs, order)



# 预处理各数据源

chemical_data_source_1_preprocessed = preprocess_data(chemical_data_source_1)

chemical_data_source_2_preprocessed = preprocess_data(chemical_data_source_2)

chemical_data_source_3_preprocessed = preprocess_data(chemical_data_source_3)



# 融合数据

fused_chemical_data = fuse_data([chemical_data_source_1_preprocessed, chemical_data_source_2_preprocessed, chemical_data_source_3_preprocessed], weights)



# 去噪数据

cutoff = 0.1

fs = 1.0

denoised_chemical_data = denoise_data(fused_chemical_data, cutoff, fs)



# 打印处理后的数据

print("预处理后的化学数据源1:", chemical_data_source_1_preprocessed)

print("预处理后的化学数据源2:", chemical_data_source_2_preprocessed)

print("预处理后的化学数据源3:", chemical_data_source_3_preprocessed)

print("融合后的化学数据:", fused_chemical_data)

print("去噪后的化学数据:", denoised_chemical_data)

4.5 化学数据处理案例

4.5.1 案例描述

假设我们要优化一个工业园区的NOx浓度预测,需要处理多个来源的化学数据。具体步骤如下:

  1. 数据准备:收集多个来源的NOx浓度数据。

  2. 数据预处理:清洗数据、归一化数据。

  3. 数据融合:使用加权平均方法融合数据。

  4. 数据去噪:使用低通滤波方法去噪。

  5. 结果验证:验证处理后的数据对模型预测的影响。

4.5.2 案例实现
  1. 数据准备:收集NOx浓度数据。

  2. 数据预处理:清洗数据、归一化数据。

  3. 数据融合:使用加权平均方法融合数据。

  4. 数据去噪:使用低通滤波方法去噪。

  5. 结果验证:验证处理后的数据对模型预测的影响。

数据样例

# 模拟多个来源的NOx浓度数据

nox_data_source_1 = np.array([0.1, 0.2, 0.3, 0.4, 0.5])

nox_data_source_2 = np.array([0.12, 0.22, 0.32, 0.42, 0.52])

nox_data_source_3 = np.array([0.15, 0.25, 0.35, 0.45, 0.55])



# 权重

weights = [0.4, 0.3, 0.3]

综合处理代码

# 导入所需库

import numpy as np

import scipy.signal as signal



# 数据预处理

def preprocess_data(data):

    # 清洗数据

    data = data[data != 0]  # 假设0值为无效数据

    # 归一化数据

    normalized_data = z_score_normalize(data)

    return normalized_data



# 数据融合

def fuse_data(data_list, weights):

    # 检查数据一致性

    if not all(data.shape == data_list[0].shape for data in data_list):

        raise ValueError("数据源的形状不一致")

    # 融合数据

    fused_data = sum(weight * data for weight, data in zip(weights, data_list))

    return fused_data



# 数据去噪

def denoise_data(data, cutoff, fs, order=5):

    return low_pass_filter(data, cutoff, fs, order)



# 预处理各数据源

nox_data_source_1_preprocessed = preprocess_data(nox_data_source_1)

nox_data_source_2_preprocessed = preprocess_data(nox_data_source_2)

nox_data_source_3_preprocessed = preprocess_data(nox_data_source_3)



# 融合数据

fused_nox_data = fuse_data([nox_data_source_1_preprocessed, nox_data_source_2_preprocessed, nox_data_source_3_preprocessed], weights)



# 去噪数据

cutoff = 0.1

fs = 1.0

denoised_nox_data = denoise_data(fused_nox_data, cutoff, fs)



# 打印处理后的数据

print("预处理后的NOx浓度数据源1:", nox_data_source_1_preprocessed)

print("预处理后的NOx浓度数据源2:", nox_data_source_2_preprocessed)

print("预处理后的NOx浓度数据源3:", nox_data_source_3_preprocessed)

print("融合后的NOx浓度数据:", fused_nox_data)

print("去噪后的NOx浓度数据:", denoised_nox_data)

4.5.3 结果验证

在完成数据处理后,需要验证处理后的数据对CALPUFF模型预测的影响。具体步骤如下:

  1. 运行模型:使用处理后的数据运行CALPUFF模型。

  2. 结果对比:对比处理前后数据的预测结果,分析变化趋势。

实例代码

# 假设已经有一个函数run_calpuff来运行模型

def run_calpuff(chemical_data, meteorological_data, terrain_data):

    # 这里简化为返回一个假设的预测结果

    return chemical_data * 10 + meteorological_data['wind_speed'] + terrain_data['height']



# 假设已经有一个函数calculate_error来计算预测误差

def calculate_error(result, observed):

    return np.mean((result - observed) ** 2)



# 模拟气象和地形数据

meteorological_data = {

    "wind_speed": 5,  # m/s

    "wind_direction": 180,  # degrees

    "stability_class": "D"  # 大气稳定度

}



terrain_data = {

    "height": 50,  # m

    "roughness": 1  # m

}



# 模拟观测数据

observed_nox_concentration = np.array([1.5, 2.5, 3.5, 4.5, 5.5])



# 运行模型

result_before = run_calpuff(nox_data_source_1, meteorological_data, terrain_data)

result_after = run_calpuff(denoised_nox_data, meteorological_data, terrain_data)



# 计算误差

error_before = calculate_error(result_before, observed_nox_concentration)

error_after = calculate_error(result_after, observed_nox_concentration)



# 打印误差结果

print("处理前的预测误差:", error_before)

print("处理后的预测误差:", error_after)

通过以上步骤,我们可以有效地优化化学数据,提高CALPUFF模型的预测精度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值