机器人运动学仿真软件:MATLAB Robotics System Toolbox_(20).实用工具与函数介绍

实用工具与函数介绍

在使用MATLAB Robotics System Toolbox进行机器人运动学仿真时,了解和掌握一些实用工具和函数是非常重要的。这些工具和函数可以帮助我们更高效地进行机器人建模、运动学分析和仿真。本节将详细介绍一些常用的工具和函数,包括机器人模型的创建、关节状态的设置、正逆运动学的计算、坐标变换等。

在这里插入图片描述

1. 机器人模型的创建

在MATLAB Robotics System Toolbox中,机器人模型通常使用rigidBodyTree对象来表示。rigidBodyTree对象允许我们定义机器人的结构,包括各个刚体和关节的连接关系。下面是一个创建简单的两连杆机器人模型的示例:


% 创建一个rigidBodyTree对象

robot = rigidBodyTree;



% 定义连杆1

link1 = rigidBody('link1');

% 定义连杆1的关节

joint1 = rigidBodyJoint('joint1', 'revolute');

% 设置连杆1的关节属性

setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置

link1.Joint = joint1;



% 定义连杆2

link2 = rigidBody('link2');

% 定义连杆2的关节

joint2 = rigidBodyJoint('joint2', 'revolute');

% 设置连杆2的关节属性

setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置

link2.Joint = joint2;



% 将连杆2连接到连杆1

addBody(robot, link2, link1, 'joint2');



% 设置连杆1为基座

addBody(robot, link1, robot, 'joint1');



% 显示机器人模型

show(robot);

1.1 rigidBodyrigidBodyJoint对象

  • rigidBody对象用于表示机器人中的刚体。

  • rigidBodyJoint对象用于表示刚体之间的关节。常用的关节类型有revolute(旋转关节)和prismatic(滑动关节)。

1.2 setFixedTransform函数

setFixedTransform函数用于设置关节的固定变换矩阵,通常用于定义连杆的初始位置和姿态。变换矩阵可以使用trvec2tform函数从平移向量转换而来。

2. 关节状态的设置

在机器人运动学仿真中,设置关节的状态(如关节角度)是非常重要的。我们可以使用homeConfigurationrandomConfigurationsetJointPositions等函数来设置关节状态。

2.1 homeConfiguration函数

homeConfiguration函数返回机器人的初始配置,通常用于将机器人恢复到初始状态。


% 获取机器人的初始配置

homeConfig = homeConfiguration(robot);



% 将机器人设置为初始配置

setJointPositions(robot, homeConfig);



% 显示机器人

show(robot);

2.2 randomConfiguration函数

randomConfiguration函数返回一个随机的关节配置,可以用于测试机器人的运动范围。


% 获取机器人的随机配置

randomConfig = randomConfiguration(robot);



% 将机器人设置为随机配置

setJointPositions(robot, randomConfig);



% 显示机器人

show(robot);

2.3 setJointPositions函数

setJointPositions函数用于设置机器人的关节位置。我们可以手动设置关节角度,或者使用上面提到的函数来生成配置。


% 手动设置关节角度

jointAngles = [pi/4, pi/6];



% 将机器人设置为指定的关节角度

setJointPositions(robot, jointAngles);



% 显示机器人

show(robot);

3. 正逆运动学的计算

正运动学(Forward Kinematics)和逆运动学(Inverse Kinematics)是机器人运动学中的两个基本问题。MATLAB Robotics System Toolbox提供了多种方法来解决这些问题。

3.1 正运动学

正运动学计算给定关节角度时,末端执行器的位置和姿态。可以使用getTransform函数来获取末端执行器的变换矩阵。


% 设置关节角度

jointAngles = [pi/4, pi/6];

setJointPositions(robot, jointAngles);



% 获取末端执行器的变换矩阵

endEffectorTransform = getTransform(robot, 'link2', 'link1');



% 显示变换矩阵

disp(endEffectorTransform);

3.2 逆运动学

逆运动学计算使末端执行器达到指定位置和姿态所需的关节角度。可以使用inverseKinematics对象来解决逆运动学问题。


% 创建一个逆运动学求解器对象

ik = inverseKinematics('RigidBodyTree', robot);



% 定义目标位置和姿态

targetPosition = [1, 0, 1];

targetOrientation = [1, 0, 0, 0];



% 使用逆运动学求解器计算关节角度

jointAngles = ik('link2', targetPosition, targetOrientation);



% 将机器人设置为计算得到的关节角度

setJointPositions(robot, jointAngles);



% 显示机器人

show(robot);

4. 坐标变换

坐标变换是机器人运动学中常见的操作。MATLAB Robotics System Toolbox提供了多种函数来处理坐标变换,包括平移、旋转和复合变换。

4.1 平移变换

可以使用trvec2tform函数将平移向量转换为变换矩阵。


% 定义平移向量

translationVector = [0.5, 0, 0.5];



% 将平移向量转换为变换矩阵

translationMatrix = trvec2tform(translationVector);



% 显示变换矩阵

disp(translationMatrix);

4.2 旋转变换

可以使用eul2tform函数将欧拉角转换为变换矩阵,或者使用rotvec2tform函数将旋转向量转换为变换矩阵。


% 定义欧拉角

eulerAngles = [pi/4, pi/6, pi/8];



% 将欧拉角转换为变换矩阵

rotationMatrix = eul2tform(eulerAngles, 'ZYX');



% 显示变换矩阵

disp(rotationMatrix);



% 定义旋转向量

rotationVector = [0, 0, pi/4];



% 将旋转向量转换为变换矩阵

rotationMatrix2 = rotvec2tform(rotationVector);



% 显示变换矩阵

disp(rotationMatrix2);

4.3 复合变换

复合变换可以将多个变换矩阵组合在一起,表示连续的平移和旋转变换。


% 定义平移矩阵

translationMatrix = trvec2tform([0.5, 0, 0.5]);



% 定义旋转变换矩阵

rotationMatrix = eul2tform([pi/4, pi/6, pi/8], 'ZYX');



% 计算复合变换矩阵

compositeTransform = translationMatrix * rotationMatrix;



% 显示复合变换矩阵

disp(compositeTransform);

5. 机器人轨迹生成

在机器人运动学仿真中,生成平滑的运动轨迹是非常重要的。MATLAB Robotics System Toolbox提供了多种方法来生成轨迹,包括多项式轨迹和样条轨迹。

5.1 多项式轨迹

可以使用polynomialTrajectory函数生成多项式轨迹。


% 定义起始和结束的关节角度

startAngles = [0, 0];

endAngles = [pi/4, pi/6];



% 定义轨迹的时间间隔

timePoints = [0, 10];



% 生成多项式轨迹

trajectory = polynomialTrajectory({'Waypoints', [startAngles; endAngles], ...

                                   'TimePoints', timePoints});



% 生成轨迹点

[points, times] = trajectory(0:0.1:10);



% 将轨迹点应用到机器人

for i = 1:length(times)

    setJointPositions(robot, points(i, :));

    show(robot);

    pause(0.1); % 暂停0.1秒以显示动画

end

5.2 样条轨迹

可以使用cubicSpline函数生成样条轨迹。


% 定义起始和结束的关节角度

startAngles = [0, 0];

endAngles = [pi/4, pi/6];



% 定义轨迹的时间间隔

timePoints = [0, 10];



% 生成样条轨迹

trajectory = cubicSpline({'Waypoints', [startAngles; endAngles], ...

                          'TimePoints', timePoints});



% 生成轨迹点

[points, times] = trajectory(0:0.1:10);



% 将轨迹点应用到机器人

for i = 1:length(times)

    setJointPositions(robot, points(i, :));

    show(robot);

    pause(0.1); % 暂停0.1秒以显示动画

end

6. 机器人动力学仿真

虽然本节主要关注运动学,但了解一些动力学仿真工具和函数也是有益的。MATLAB Robotics System Toolbox提供了rigidBodyDynamics对象来处理动力学问题。

6.1 机器人动力学模型

可以使用rigidBodyDynamics对象来计算机器人的动力学特性,如关节力矩。


% 创建一个rigidBodyDynamics对象

dynamics = rigidBodyDynamics(robot, 'Gravity', [0, 0, -9.81]);



% 定义关节位置和速度

jointPositions = [pi/4, pi/6];

jointVelocities = [0, 0];



% 计算关节力矩

jointTorques = dynamics(jointPositions, jointVelocities, zeros(2,1));



% 显示关节力矩

disp(jointTorques);

6.2 机器人控制

可以使用robotics.RigidBodyTree对象和rigidBodyDynamics对象来实现简单的机器人控制。


% 定义控制目标

targetAngles = [pi/2, pi/3];



% 定义控制参数

Kp = 5;

Kd = 0.5;



% 模拟控制过程

for t = 0:0.1:10

    % 获取当前关节位置和速度

    jointPositions = getJointPositions(robot);

    jointVelocities = zeros(2, 1);

    

    % 计算误差

    positionError = targetAngles - jointPositions;

    velocityError = zeros(2, 1);

    

    % 计算控制力矩

    jointTorques = Kp * positionError + Kd * velocityError;

    

    % 应用力矩

    dynamics = rigidBodyDynamics(robot, 'Gravity', [0, 0, -9.81]);

    jointPositions = dynamics(jointPositions, jointVelocities, jointTorques);

    

    % 更新关节位置

    setJointPositions(robot, jointPositions);

    

    % 显示机器人

    show(robot);

    pause(0.1); % 暂停0.1秒以显示动画

end

7. 机器人仿真环境

在进行机器人仿真时,创建一个合适的仿真环境是非常重要的。MATLAB Robotics System Toolbox提供了多种工具和函数来设置和管理仿真环境。

7.1 三维可视化

可以使用show函数将机器人模型在三维环境中可视化。


% 设置关节角度

jointAngles = [pi/4, pi/6];

setJointPositions(robot, jointAngles);



% 显示机器人

figure;

show(robot);

7.2 动态仿真

可以使用animate函数来动态仿真机器人的运动。


% 定义起始和结束的关节角度

startAngles = [0, 0];

endAngles = [pi/4, pi/6];



% 定义轨迹的时间间隔

timePoints = [0, 10];



% 生成多项式轨迹

trajectory = polynomialTrajectory({'Waypoints', [startAngles; endAngles], ...

                                   'TimePoints', timePoints});



% 动态仿真

figure;

animate(robot, trajectory, 'Frames', 'link2', 'RateLimit', 10);

7.3 仿真环境设置

可以使用robotics.RigidBodyTree对象的属性来设置仿真环境,如重力、摩擦等。


% 设置重力

robot.Gravity = [0, 0, -9.81];



% 设置摩擦系数

link1.Joint.Friction = 0.1;

link2.Joint.Friction = 0.1;



% 显示机器人

show(robot);

8. 机器人运动学分析

在机器人运动学仿真中,进行运动学分析是必不可少的。MATLAB Robotics System Toolbox提供了多种工具和函数来分析机器人的运动学特性。

8.1 运动学约束

可以使用rigidBodyTree对象的属性来定义和分析运动学约束。


% 定义运动学约束

link1.Joint.Limits = [-pi/2, pi/2];

link2.Joint.Limits = [-pi/2, pi/2];



% 检查关节角度是否在约束范围内

jointAngles = [pi/4, pi/6];

isWithinLimits = isConfigWithinLimits(robot, jointAngles);



% 显示检查结果

disp(isWithinLimits);

8.2 运动学雅可比矩阵

可以使用geometricJacobian函数来计算机器人的几何雅可比矩阵。


% 设置关节角度

jointAngles = [pi/4, pi/6];

setJointPositions(robot, jointAngles);



% 计算几何雅可比矩阵

jacobian = geometricJacobian(robot, 'link2', jointAngles);



% 显示雅可比矩阵

disp(jacobian);

8.3 运动学奇异点

可以使用isRobotInSingularity函数来检查机器人是否处于奇异点。


% 设置关节角度

jointAngles = [pi/4, pi/6];

setJointPositions(robot, jointAngles);



% 检查是否处于奇异点

inSingularity = isRobotInSingularity(robot, jointAngles);



% 显示检查结果

disp(inSingularity);

9. 机器人运动学仿真案例

为了更好地理解如何使用MATLAB Robotics System Toolbox进行机器人运动学仿真,下面提供一个综合案例。

9.1 两连杆机器人的轨迹跟随

本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器跟随预定的轨迹。


% 创建一个rigidBodyTree对象

robot = rigidBodyTree;



% 定义连杆1

link1 = rigidBody('link1');

joint1 = rigidBodyJoint('joint1', 'revolute');

setFixedTransform(joint1, trvec2tform([0 0 0.5]));

link1.Joint = joint1;



% 定义连杆2

link2 = rigidBody('link2');

joint2 = rigidBodyJoint('joint2', 'revolute');

setFixedTransform(joint2, trvec2tform([0 0 0.5]));

link2.Joint = joint2;



% 将连杆2连接到连杆1

addBody(robot, link2, link1, 'joint2');



% 设置连杆1为基座

addBody(robot, link1, robot, 'joint1');



% 创建一个逆运动学求解器对象

ik = inverseKinematics('RigidBodyTree', robot);



% 定义目标轨迹

targetPositions = [0:0.1:2]' * [1, 0, 1]; % 生成目标位置

targetOrientations = repmat([1, 0, 0, 0], size(targetPositions, 1), 1); % 生成目标姿态



% 动态仿真

figure;

for i = 1:size(targetPositions, 1)

    % 使用逆运动学求解器计算关节角度

    jointAngles = ik('link2', targetPositions(i, :), targetOrientations(i, :));

    

    % 将机器人设置为计算得到的关节角度

    setJointPositions(robot, jointAngles);

    

    % 显示机器人

    show(robot);

    pause(0.1); % 暂停0.1秒以显示动画

end

9.2 机器人避障

本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器在避障的同时跟随预定的轨迹。


% 创建一个rigidBodyTree对象

robot = rigidBodyTree;



% 定义连杆1

link1 = rigidBody('link1');

joint1 = rigidBodyJoint('joint1', 'revolute');

setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置

link1.Joint = joint1;



% 定义连杆2

link2 = rigidBody('link2');

joint2 = rigidBodyJoint('joint2', 'revolute');

setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置

link2.Joint = joint2;



% 将连杆2连接到连杆1

addBody(robot, link2, link1, 'joint2');



% 设置连杆1为基座

addBody(robot, link1, robot, 'joint1');



% 创建一个逆运动学求解器对象

ik = inverseKinematics('RigidBodyTree', robot);



% 定义目标轨迹

targetPositions = [0:0.1:2]' * [1, 0, 1]; % 生成目标位置

targetOrientations = repmat([1, 0, 0, 0], size(targetPositions, 1), 1); % 生成目标姿态



% 定义障碍物位置和半径

obstaclePosition = [1, 0, 0.5];

obstacleRadius = 0.3;



% 动态仿真

figure;

for i = 1:size(targetPositions, 1)

    % 使用逆运动学求解器计算关节角度

    jointAngles = ik('link2', targetPositions(i, :), targetOrientations(i, :));

    

    % 检查是否与障碍物碰撞

    link1Position = getTransform(robot, 'link1', 'world');

    link2Position = getTransform(robot, 'link2', 'world');

    

    % 计算两个连杆的末端位置

    link1EndPosition = link1Position(1:3, 4);

    link2EndPosition = link2Position(1:3, 4);

    

    % 检查连杆末端是否在障碍物范围内

    if norm(link1EndPosition - obstaclePosition) < obstacleRadius || norm(link2EndPosition - obstaclePosition) < obstacleRadius

        % 如果碰撞,调整关节角度以避开障碍物

        jointAngles = jointAngles + [0.1, -0.1]; % 简单的调整

    end

    

    % 将机器人设置为计算得到的关节角度

    setJointPositions(robot, jointAngles);

    

    % 显示机器人

    show(robot);

    hold on;

    % 绘制障碍物

    plot3(obstaclePosition(1), obstaclePosition(2), obstaclePosition(3), 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'r');

    hold off;

    pause(0.1); % 暂停0.1秒以显示动画

end

9.3 机器人抓取

本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器抓取特定位置的物体。


% 创建一个rigidBodyTree对象

robot = rigidBodyTree;



% 定义连杆1

link1 = rigidBody('link1');

joint1 = rigidBodyJoint('joint1', 'revolute');

setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置

link1.Joint = joint1;



% 定义连杆2

link2 = rigidBody('link2');

joint2 = rigidBodyJoint('joint2', 'revolute');

setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置

link2.Joint = joint2;



% 将连杆2连接到连杆1

addBody(robot, link2, link1, 'joint2');



% 设置连杆1为基座

addBody(robot, link1, robot, 'joint1');



% 创建一个逆运动学求解器对象

ik = inverseKinematics('RigidBodyTree', robot);



% 定义目标位置和姿态

targetPosition = [1, 0, 1];

targetOrientation = [1, 0, 0, 0];



% 使用逆运动学求解器计算关节角度

jointAngles = ik('link2', targetPosition, targetOrientation);



% 将机器人设置为计算得到的关节角度

setJointPositions(robot, jointAngles);



% 显示机器人

figure;

show(robot);

hold on;

% 绘制目标位置

plot3(targetPosition(1), targetPosition(2), targetPosition(3), 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'g');

hold off;

9.4 机器人路径规划

本案例将展示如何创建一个两连杆机器人模型,并使用路径规划算法生成从起始点到目标点的平滑路径。


% 创建一个rigidBodyTree对象

robot = rigidBodyTree;



% 定义连杆1

link1 = rigidBody('link1');

joint1 = rigidBodyJoint('joint1', 'revolute');

setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置

link1.Joint = joint1;



% 定义连杆2

link2 = rigidBody('link2');

joint2 = rigidBodyJoint('joint2', 'revolute');

setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置

link2.Joint = joint2;



% 将连杆2连接到连杆1

addBody(robot, link2, link1, 'joint2');



% 设置连杆1为基座

addBody(robot, link1, robot, 'joint1');



% 定义起始和目标位置

startPosition = [0, 0, 0.5];

targetPosition = [1, 0, 1];



% 定义路径规划算法(这里使用简单的直线路径)

path = linspace(startPosition, targetPosition, 100);



% 创建一个逆运动学求解器对象

ik = inverseKinematics('RigidBodyTree', robot);



% 动态仿真

figure;

for i = 1:size(path, 1)

    % 使用逆运动学求解器计算关节角度

    jointAngles = ik('link2', path(i, :), [1, 0, 0, 0]);

    

    % 将机器人设置为计算得到的关节角度

    setJointPositions(robot, jointAngles);

    

    % 显示机器人

    show(robot);

    hold on;

    % 绘制路径

    plot3(path(1:i, 1), path(1:i, 2), path(1:i, 3), 'b');

    hold off;

    pause(0.05); % 暂停0.05秒以显示动画

end

10. 总结

通过上述介绍,我们可以看到MATLAB Robotics System Toolbox提供了丰富的工具和函数来帮助我们进行机器人运动学仿真。从机器人模型的创建、关节状态的设置、正逆运动学的计算、坐标变换、轨迹生成到动力学仿真和运动学分析,这些功能都极大地简化了我们的仿真工作。希望本文档能够帮助你更好地理解和使用这些工具,提高机器人仿真和分析的效率。

10.1 进一步学习

  • 官方文档:MATLAB Robotics System Toolbox的官方文档提供了详细的函数说明和示例,是学习和参考的重要资源。

  • 在线教程:网络上有许多关于MATLAB Robotics System Toolbox的教程和案例,可以帮助你更深入地掌握这些工具的使用。

  • 社区交流:加入MATLAB社区和论坛,与其他人交流经验和问题,可以加速你的学习进程。

10.2 实践建议

  • 动手实践:理论学习和实践操作相结合,通过编写代码和仿真来加深理解。

  • 复杂模型:尝试创建更复杂的机器人模型,如多自由度机械臂,以检验你的技能。

  • 真实应用:结合实际的机器人项目,将所学知识应用于解决实际问题,提升应用能力。

希望本文档能够帮助你在机器人运动学仿真领域取得更大的进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kkchenjj

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值