实用工具与函数介绍
在使用MATLAB Robotics System Toolbox进行机器人运动学仿真时,了解和掌握一些实用工具和函数是非常重要的。这些工具和函数可以帮助我们更高效地进行机器人建模、运动学分析和仿真。本节将详细介绍一些常用的工具和函数,包括机器人模型的创建、关节状态的设置、正逆运动学的计算、坐标变换等。
1. 机器人模型的创建
在MATLAB Robotics System Toolbox中,机器人模型通常使用rigidBodyTree
对象来表示。rigidBodyTree
对象允许我们定义机器人的结构,包括各个刚体和关节的连接关系。下面是一个创建简单的两连杆机器人模型的示例:
% 创建一个rigidBodyTree对象
robot = rigidBodyTree;
% 定义连杆1
link1 = rigidBody('link1');
% 定义连杆1的关节
joint1 = rigidBodyJoint('joint1', 'revolute');
% 设置连杆1的关节属性
setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置
link1.Joint = joint1;
% 定义连杆2
link2 = rigidBody('link2');
% 定义连杆2的关节
joint2 = rigidBodyJoint('joint2', 'revolute');
% 设置连杆2的关节属性
setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置
link2.Joint = joint2;
% 将连杆2连接到连杆1
addBody(robot, link2, link1, 'joint2');
% 设置连杆1为基座
addBody(robot, link1, robot, 'joint1');
% 显示机器人模型
show(robot);
1.1 rigidBody
和rigidBodyJoint
对象
-
rigidBody
对象用于表示机器人中的刚体。 -
rigidBodyJoint
对象用于表示刚体之间的关节。常用的关节类型有revolute
(旋转关节)和prismatic
(滑动关节)。
1.2 setFixedTransform
函数
setFixedTransform
函数用于设置关节的固定变换矩阵,通常用于定义连杆的初始位置和姿态。变换矩阵可以使用trvec2tform
函数从平移向量转换而来。
2. 关节状态的设置
在机器人运动学仿真中,设置关节的状态(如关节角度)是非常重要的。我们可以使用homeConfiguration
、randomConfiguration
和setJointPositions
等函数来设置关节状态。
2.1 homeConfiguration
函数
homeConfiguration
函数返回机器人的初始配置,通常用于将机器人恢复到初始状态。
% 获取机器人的初始配置
homeConfig = homeConfiguration(robot);
% 将机器人设置为初始配置
setJointPositions(robot, homeConfig);
% 显示机器人
show(robot);
2.2 randomConfiguration
函数
randomConfiguration
函数返回一个随机的关节配置,可以用于测试机器人的运动范围。
% 获取机器人的随机配置
randomConfig = randomConfiguration(robot);
% 将机器人设置为随机配置
setJointPositions(robot, randomConfig);
% 显示机器人
show(robot);
2.3 setJointPositions
函数
setJointPositions
函数用于设置机器人的关节位置。我们可以手动设置关节角度,或者使用上面提到的函数来生成配置。
% 手动设置关节角度
jointAngles = [pi/4, pi/6];
% 将机器人设置为指定的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
show(robot);
3. 正逆运动学的计算
正运动学(Forward Kinematics)和逆运动学(Inverse Kinematics)是机器人运动学中的两个基本问题。MATLAB Robotics System Toolbox提供了多种方法来解决这些问题。
3.1 正运动学
正运动学计算给定关节角度时,末端执行器的位置和姿态。可以使用getTransform
函数来获取末端执行器的变换矩阵。
% 设置关节角度
jointAngles = [pi/4, pi/6];
setJointPositions(robot, jointAngles);
% 获取末端执行器的变换矩阵
endEffectorTransform = getTransform(robot, 'link2', 'link1');
% 显示变换矩阵
disp(endEffectorTransform);
3.2 逆运动学
逆运动学计算使末端执行器达到指定位置和姿态所需的关节角度。可以使用inverseKinematics
对象来解决逆运动学问题。
% 创建一个逆运动学求解器对象
ik = inverseKinematics('RigidBodyTree', robot);
% 定义目标位置和姿态
targetPosition = [1, 0, 1];
targetOrientation = [1, 0, 0, 0];
% 使用逆运动学求解器计算关节角度
jointAngles = ik('link2', targetPosition, targetOrientation);
% 将机器人设置为计算得到的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
show(robot);
4. 坐标变换
坐标变换是机器人运动学中常见的操作。MATLAB Robotics System Toolbox提供了多种函数来处理坐标变换,包括平移、旋转和复合变换。
4.1 平移变换
可以使用trvec2tform
函数将平移向量转换为变换矩阵。
% 定义平移向量
translationVector = [0.5, 0, 0.5];
% 将平移向量转换为变换矩阵
translationMatrix = trvec2tform(translationVector);
% 显示变换矩阵
disp(translationMatrix);
4.2 旋转变换
可以使用eul2tform
函数将欧拉角转换为变换矩阵,或者使用rotvec2tform
函数将旋转向量转换为变换矩阵。
% 定义欧拉角
eulerAngles = [pi/4, pi/6, pi/8];
% 将欧拉角转换为变换矩阵
rotationMatrix = eul2tform(eulerAngles, 'ZYX');
% 显示变换矩阵
disp(rotationMatrix);
% 定义旋转向量
rotationVector = [0, 0, pi/4];
% 将旋转向量转换为变换矩阵
rotationMatrix2 = rotvec2tform(rotationVector);
% 显示变换矩阵
disp(rotationMatrix2);
4.3 复合变换
复合变换可以将多个变换矩阵组合在一起,表示连续的平移和旋转变换。
% 定义平移矩阵
translationMatrix = trvec2tform([0.5, 0, 0.5]);
% 定义旋转变换矩阵
rotationMatrix = eul2tform([pi/4, pi/6, pi/8], 'ZYX');
% 计算复合变换矩阵
compositeTransform = translationMatrix * rotationMatrix;
% 显示复合变换矩阵
disp(compositeTransform);
5. 机器人轨迹生成
在机器人运动学仿真中,生成平滑的运动轨迹是非常重要的。MATLAB Robotics System Toolbox提供了多种方法来生成轨迹,包括多项式轨迹和样条轨迹。
5.1 多项式轨迹
可以使用polynomialTrajectory
函数生成多项式轨迹。
% 定义起始和结束的关节角度
startAngles = [0, 0];
endAngles = [pi/4, pi/6];
% 定义轨迹的时间间隔
timePoints = [0, 10];
% 生成多项式轨迹
trajectory = polynomialTrajectory({'Waypoints', [startAngles; endAngles], ...
'TimePoints', timePoints});
% 生成轨迹点
[points, times] = trajectory(0:0.1:10);
% 将轨迹点应用到机器人
for i = 1:length(times)
setJointPositions(robot, points(i, :));
show(robot);
pause(0.1); % 暂停0.1秒以显示动画
end
5.2 样条轨迹
可以使用cubicSpline
函数生成样条轨迹。
% 定义起始和结束的关节角度
startAngles = [0, 0];
endAngles = [pi/4, pi/6];
% 定义轨迹的时间间隔
timePoints = [0, 10];
% 生成样条轨迹
trajectory = cubicSpline({'Waypoints', [startAngles; endAngles], ...
'TimePoints', timePoints});
% 生成轨迹点
[points, times] = trajectory(0:0.1:10);
% 将轨迹点应用到机器人
for i = 1:length(times)
setJointPositions(robot, points(i, :));
show(robot);
pause(0.1); % 暂停0.1秒以显示动画
end
6. 机器人动力学仿真
虽然本节主要关注运动学,但了解一些动力学仿真工具和函数也是有益的。MATLAB Robotics System Toolbox提供了rigidBodyDynamics
对象来处理动力学问题。
6.1 机器人动力学模型
可以使用rigidBodyDynamics
对象来计算机器人的动力学特性,如关节力矩。
% 创建一个rigidBodyDynamics对象
dynamics = rigidBodyDynamics(robot, 'Gravity', [0, 0, -9.81]);
% 定义关节位置和速度
jointPositions = [pi/4, pi/6];
jointVelocities = [0, 0];
% 计算关节力矩
jointTorques = dynamics(jointPositions, jointVelocities, zeros(2,1));
% 显示关节力矩
disp(jointTorques);
6.2 机器人控制
可以使用robotics.RigidBodyTree
对象和rigidBodyDynamics
对象来实现简单的机器人控制。
% 定义控制目标
targetAngles = [pi/2, pi/3];
% 定义控制参数
Kp = 5;
Kd = 0.5;
% 模拟控制过程
for t = 0:0.1:10
% 获取当前关节位置和速度
jointPositions = getJointPositions(robot);
jointVelocities = zeros(2, 1);
% 计算误差
positionError = targetAngles - jointPositions;
velocityError = zeros(2, 1);
% 计算控制力矩
jointTorques = Kp * positionError + Kd * velocityError;
% 应用力矩
dynamics = rigidBodyDynamics(robot, 'Gravity', [0, 0, -9.81]);
jointPositions = dynamics(jointPositions, jointVelocities, jointTorques);
% 更新关节位置
setJointPositions(robot, jointPositions);
% 显示机器人
show(robot);
pause(0.1); % 暂停0.1秒以显示动画
end
7. 机器人仿真环境
在进行机器人仿真时,创建一个合适的仿真环境是非常重要的。MATLAB Robotics System Toolbox提供了多种工具和函数来设置和管理仿真环境。
7.1 三维可视化
可以使用show
函数将机器人模型在三维环境中可视化。
% 设置关节角度
jointAngles = [pi/4, pi/6];
setJointPositions(robot, jointAngles);
% 显示机器人
figure;
show(robot);
7.2 动态仿真
可以使用animate
函数来动态仿真机器人的运动。
% 定义起始和结束的关节角度
startAngles = [0, 0];
endAngles = [pi/4, pi/6];
% 定义轨迹的时间间隔
timePoints = [0, 10];
% 生成多项式轨迹
trajectory = polynomialTrajectory({'Waypoints', [startAngles; endAngles], ...
'TimePoints', timePoints});
% 动态仿真
figure;
animate(robot, trajectory, 'Frames', 'link2', 'RateLimit', 10);
7.3 仿真环境设置
可以使用robotics.RigidBodyTree
对象的属性来设置仿真环境,如重力、摩擦等。
% 设置重力
robot.Gravity = [0, 0, -9.81];
% 设置摩擦系数
link1.Joint.Friction = 0.1;
link2.Joint.Friction = 0.1;
% 显示机器人
show(robot);
8. 机器人运动学分析
在机器人运动学仿真中,进行运动学分析是必不可少的。MATLAB Robotics System Toolbox提供了多种工具和函数来分析机器人的运动学特性。
8.1 运动学约束
可以使用rigidBodyTree
对象的属性来定义和分析运动学约束。
% 定义运动学约束
link1.Joint.Limits = [-pi/2, pi/2];
link2.Joint.Limits = [-pi/2, pi/2];
% 检查关节角度是否在约束范围内
jointAngles = [pi/4, pi/6];
isWithinLimits = isConfigWithinLimits(robot, jointAngles);
% 显示检查结果
disp(isWithinLimits);
8.2 运动学雅可比矩阵
可以使用geometricJacobian
函数来计算机器人的几何雅可比矩阵。
% 设置关节角度
jointAngles = [pi/4, pi/6];
setJointPositions(robot, jointAngles);
% 计算几何雅可比矩阵
jacobian = geometricJacobian(robot, 'link2', jointAngles);
% 显示雅可比矩阵
disp(jacobian);
8.3 运动学奇异点
可以使用isRobotInSingularity
函数来检查机器人是否处于奇异点。
% 设置关节角度
jointAngles = [pi/4, pi/6];
setJointPositions(robot, jointAngles);
% 检查是否处于奇异点
inSingularity = isRobotInSingularity(robot, jointAngles);
% 显示检查结果
disp(inSingularity);
9. 机器人运动学仿真案例
为了更好地理解如何使用MATLAB Robotics System Toolbox进行机器人运动学仿真,下面提供一个综合案例。
9.1 两连杆机器人的轨迹跟随
本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器跟随预定的轨迹。
% 创建一个rigidBodyTree对象
robot = rigidBodyTree;
% 定义连杆1
link1 = rigidBody('link1');
joint1 = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint1, trvec2tform([0 0 0.5]));
link1.Joint = joint1;
% 定义连杆2
link2 = rigidBody('link2');
joint2 = rigidBodyJoint('joint2', 'revolute');
setFixedTransform(joint2, trvec2tform([0 0 0.5]));
link2.Joint = joint2;
% 将连杆2连接到连杆1
addBody(robot, link2, link1, 'joint2');
% 设置连杆1为基座
addBody(robot, link1, robot, 'joint1');
% 创建一个逆运动学求解器对象
ik = inverseKinematics('RigidBodyTree', robot);
% 定义目标轨迹
targetPositions = [0:0.1:2]' * [1, 0, 1]; % 生成目标位置
targetOrientations = repmat([1, 0, 0, 0], size(targetPositions, 1), 1); % 生成目标姿态
% 动态仿真
figure;
for i = 1:size(targetPositions, 1)
% 使用逆运动学求解器计算关节角度
jointAngles = ik('link2', targetPositions(i, :), targetOrientations(i, :));
% 将机器人设置为计算得到的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
show(robot);
pause(0.1); % 暂停0.1秒以显示动画
end
9.2 机器人避障
本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器在避障的同时跟随预定的轨迹。
% 创建一个rigidBodyTree对象
robot = rigidBodyTree;
% 定义连杆1
link1 = rigidBody('link1');
joint1 = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置
link1.Joint = joint1;
% 定义连杆2
link2 = rigidBody('link2');
joint2 = rigidBodyJoint('joint2', 'revolute');
setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置
link2.Joint = joint2;
% 将连杆2连接到连杆1
addBody(robot, link2, link1, 'joint2');
% 设置连杆1为基座
addBody(robot, link1, robot, 'joint1');
% 创建一个逆运动学求解器对象
ik = inverseKinematics('RigidBodyTree', robot);
% 定义目标轨迹
targetPositions = [0:0.1:2]' * [1, 0, 1]; % 生成目标位置
targetOrientations = repmat([1, 0, 0, 0], size(targetPositions, 1), 1); % 生成目标姿态
% 定义障碍物位置和半径
obstaclePosition = [1, 0, 0.5];
obstacleRadius = 0.3;
% 动态仿真
figure;
for i = 1:size(targetPositions, 1)
% 使用逆运动学求解器计算关节角度
jointAngles = ik('link2', targetPositions(i, :), targetOrientations(i, :));
% 检查是否与障碍物碰撞
link1Position = getTransform(robot, 'link1', 'world');
link2Position = getTransform(robot, 'link2', 'world');
% 计算两个连杆的末端位置
link1EndPosition = link1Position(1:3, 4);
link2EndPosition = link2Position(1:3, 4);
% 检查连杆末端是否在障碍物范围内
if norm(link1EndPosition - obstaclePosition) < obstacleRadius || norm(link2EndPosition - obstaclePosition) < obstacleRadius
% 如果碰撞,调整关节角度以避开障碍物
jointAngles = jointAngles + [0.1, -0.1]; % 简单的调整
end
% 将机器人设置为计算得到的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
show(robot);
hold on;
% 绘制障碍物
plot3(obstaclePosition(1), obstaclePosition(2), obstaclePosition(3), 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'r');
hold off;
pause(0.1); % 暂停0.1秒以显示动画
end
9.3 机器人抓取
本案例将展示如何创建一个两连杆机器人模型,并使用逆运动学求解器生成轨迹,使机器人末端执行器抓取特定位置的物体。
% 创建一个rigidBodyTree对象
robot = rigidBodyTree;
% 定义连杆1
link1 = rigidBody('link1');
joint1 = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置
link1.Joint = joint1;
% 定义连杆2
link2 = rigidBody('link2');
joint2 = rigidBodyJoint('joint2', 'revolute');
setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置
link2.Joint = joint2;
% 将连杆2连接到连杆1
addBody(robot, link2, link1, 'joint2');
% 设置连杆1为基座
addBody(robot, link1, robot, 'joint1');
% 创建一个逆运动学求解器对象
ik = inverseKinematics('RigidBodyTree', robot);
% 定义目标位置和姿态
targetPosition = [1, 0, 1];
targetOrientation = [1, 0, 0, 0];
% 使用逆运动学求解器计算关节角度
jointAngles = ik('link2', targetPosition, targetOrientation);
% 将机器人设置为计算得到的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
figure;
show(robot);
hold on;
% 绘制目标位置
plot3(targetPosition(1), targetPosition(2), targetPosition(3), 'o', 'MarkerSize', 10, 'MarkerFaceColor', 'g');
hold off;
9.4 机器人路径规划
本案例将展示如何创建一个两连杆机器人模型,并使用路径规划算法生成从起始点到目标点的平滑路径。
% 创建一个rigidBodyTree对象
robot = rigidBodyTree;
% 定义连杆1
link1 = rigidBody('link1');
joint1 = rigidBodyJoint('joint1', 'revolute');
setFixedTransform(joint1, trvec2tform([0 0 0.5])); % 连杆1的初始位置
link1.Joint = joint1;
% 定义连杆2
link2 = rigidBody('link2');
joint2 = rigidBodyJoint('joint2', 'revolute');
setFixedTransform(joint2, trvec2tform([0 0 0.5])); % 连杆2的初始位置
link2.Joint = joint2;
% 将连杆2连接到连杆1
addBody(robot, link2, link1, 'joint2');
% 设置连杆1为基座
addBody(robot, link1, robot, 'joint1');
% 定义起始和目标位置
startPosition = [0, 0, 0.5];
targetPosition = [1, 0, 1];
% 定义路径规划算法(这里使用简单的直线路径)
path = linspace(startPosition, targetPosition, 100);
% 创建一个逆运动学求解器对象
ik = inverseKinematics('RigidBodyTree', robot);
% 动态仿真
figure;
for i = 1:size(path, 1)
% 使用逆运动学求解器计算关节角度
jointAngles = ik('link2', path(i, :), [1, 0, 0, 0]);
% 将机器人设置为计算得到的关节角度
setJointPositions(robot, jointAngles);
% 显示机器人
show(robot);
hold on;
% 绘制路径
plot3(path(1:i, 1), path(1:i, 2), path(1:i, 3), 'b');
hold off;
pause(0.05); % 暂停0.05秒以显示动画
end
10. 总结
通过上述介绍,我们可以看到MATLAB Robotics System Toolbox提供了丰富的工具和函数来帮助我们进行机器人运动学仿真。从机器人模型的创建、关节状态的设置、正逆运动学的计算、坐标变换、轨迹生成到动力学仿真和运动学分析,这些功能都极大地简化了我们的仿真工作。希望本文档能够帮助你更好地理解和使用这些工具,提高机器人仿真和分析的效率。
10.1 进一步学习
-
官方文档:MATLAB Robotics System Toolbox的官方文档提供了详细的函数说明和示例,是学习和参考的重要资源。
-
在线教程:网络上有许多关于MATLAB Robotics System Toolbox的教程和案例,可以帮助你更深入地掌握这些工具的使用。
-
社区交流:加入MATLAB社区和论坛,与其他人交流经验和问题,可以加速你的学习进程。
10.2 实践建议
-
动手实践:理论学习和实践操作相结合,通过编写代码和仿真来加深理解。
-
复杂模型:尝试创建更复杂的机器人模型,如多自由度机械臂,以检验你的技能。
-
真实应用:结合实际的机器人项目,将所学知识应用于解决实际问题,提升应用能力。
希望本文档能够帮助你在机器人运动学仿真领域取得更大的进步!