滑动窗口 单调队列或者multiset

题目链接

https://www.acwing.com/problem/content/156/

题目

给定一个大小为n≤10^6的数组。

有一个大小为k的滑动窗口,它从数组的最左边移动到最右边。

您只能在窗口中看到k个数字。

每次滑动窗口向右移动一个位置。

以下是一个例子:

该数组为[1 3 -1 -3 5 3 6 7],k为3。

窗口位置最小值最大值
[1 3 -1] -3 5 3 6 7-1-3
1 [3 -1 -3] 5 3 6 7-33
1 3 [-1 -3 5] 3 6 7-35
1 3 -1 [-3 5 3] 6 7-35
1 3 -1 -3 [5 3 6] 736
1 3 -1 -3 5 [3 6 7]37

您的任务是确定滑动窗口位于每个位置时,窗口中的最大值和最小值。

输入格式

输入包含两行。

第一行包含两个整数n和k,分别代表数组长度和滑动窗口的长度。

第二行有n个整数,代表数组的具体数值。

同行数据之间用空格隔开。

输出格式

输出包含两个。

第一行输出,从左至右,每个位置滑动窗口中的最小值。

第二行输出,从左至右,每个位置滑动窗口中的最大值。

输入样例:

8 3
1 3 -1 -3 5 3 6 7

输出样例:

-1 -3 -3 -3 3 3
3 3 5 5 6 7

题解

单调队列的板子题。不过也可以用multiset做。单调队列复杂度O(n).multiset复杂度O(nlogn)

用数组模拟队列,q[maxn], hh表示队头,tt表示队尾。

初始化:hh=0,tt=-1.   hh>tt队列为空,hh<=tt队列非空。

入队从队尾入: q[++tt]=i;

队列里放的是下标

求区间最小值那么维护队列单调严格递增,队头元素就是当前区间的最小值的数组下标

求区间最小值那么维护队列单调严格递减,队头元素就是当前区间的最大值的数组下标

单调队列代码

#include<algorithm>
#include <iostream>
#include<cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=1e6+5;
int a[maxn];
int q[maxn];
int main(){
    int n,m;
    cin>>n>>m;
    for(int i=0;i<n;i++) scanf("%d",a+i);
    int hh=0,tt=-1;
    for(int i=0;i<n;i++){
        if(hh<=tt&&q[hh]<=i-m) hh++;
        while(hh<=tt&&a[q[tt]]>=a[i]) tt--;
        q[++tt]=i;
        if(i>=m-1) printf("%d ",a[q[hh]]);
    }
    cout<<endl;
     hh=0,tt=-1;
    for(int i=0;i<n;i++){
        if(hh<=tt&&q[hh]<=i-m) hh++;
        while(hh<=tt&&a[q[tt]]<=a[i]) tt--;
        q[++tt]=i;
        if(i>=m-1) printf("%d ",a[q[hh]]);
    }
    return 0;
}

multiset代码

因为元素有重复值,每次只删除重复值中的一个,那么要根据地址删。

#include<algorithm>
#include<set>
#include <iostream>
#include<cstring>
#include<vector>
#include <cstdio>
using namespace std;
typedef long long ll;
const int maxn=1e6+5;
multiset<int> s;
int a[maxn];
vector<int> ans,ans2;
int main(){
    int n,k;
    cin>>n>>k;
    for(int i=0;i<n;i++){
        scanf("%d",a+i);
    }
    for(int i=0;i<k-1;i++) s.insert(a[i]);
    for(int i=k-1;i<n;i++){
        s.insert(a[i]);
        ans.push_back(*s.begin());
        ans2.push_back(*s.rbegin());
        s.erase(s.find(a[i-k+1]));
    }
    for(int i=0;i<ans.size();i++) printf("%d ",ans[i]);
    cout<<endl;
    for(int i=0;i<ans2.size();i++) printf("%d ",ans2[i]);
    cout<<endl;
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值