MFCC – 语音识别参数
原文链接:MFCC – 语音识别
在任意一个Automatic speech recognition 系统中,第一步就是提取特征。换句话说,我们需要把音频信号中具有辨识性的成分提取出来,然后把其他的乱七八糟的信息扔掉,例如背景噪声啊,情绪啊等等。
搞清语音是怎么产生的对于我们理解语音有很大帮助。人通过声道产生声音,声道的shape(形状?)决定了发出怎样的声音。声道的shape包括舌头,牙齿等。如果我们可以准确的知道这个形状,那么我们就可以对产生的音素phoneme进行准确的描述。声道的形状在语音短时功率谱的包络中显示出来。
而MFCCs就是一种准确描述这个包络的一种特征。
MFCCs中文名为“ 梅尔倒频谱系数 ”(Mel Frequency Cepstral Coefficents)是一种在自动语音和说话人识别中广泛使用的特征。它是在1980年由Davis和Mermelstein搞出来的。从那时起。在语音识别领域,MFCCs在人工特征方面可谓是鹤立鸡群,一枝独秀,从未被超越啊(至于说Deep Learning的特征学习那是后话了)。
好,到这里,我们提到了一个很重要的关键词:声道的形状,然后知道它很重要,还知道它可以在语音短时功率谱的包络中显示出来。哎,那什么是功率谱?什么是包络?什么是MFCCs?它为什么有效?如何得到?下面咱们慢慢道来。
一、声谱图(Spectrogram)
我们处理的是语音信号,那么如何去描述它很重要。因为不同的描述方式放映它不同的信息。那怎样的描述方式才利于我们观测,利于我们理解呢?这里我们先来了解一个叫声谱图的东西。
这里,可以看出语音信号是由一系列频谱向量表示,这段语音被分为很多帧,每帧语音都对应于一个频谱(通过短时FFT计算),频谱表示频率与能量的关系。在实际使用中,频谱图有三种,即线性振幅谱、对数振幅谱、自功率谱(对数振幅谱中各谱线的振幅都作了对数计算,所以其纵坐标的单位是dB(分贝)。这个变换的目的是使那些振幅较低的成分相对高振幅成分得以拉高,以便观察掩盖在低幅噪声中的周期信号)。
我们先将其中一帧语音的频谱通过坐标表示出来,如上图左。现在我们将左边的频谱旋转90度。得到中间的图。然后把这些幅度映射到一个灰度级表示(也可以理解为将连续的幅度量化为256个量化值?),0表示黑,255表示白色。幅度值越大,相应的区域越黑。这样就得到了最右边的图。那为什么要这样呢?**为的是增加时间这个维度,这样就可以显示一段语音而不是一帧语音的频谱,而且可以直观的看到静态和动态的信息。**优点稍后呈上。
这样我们会得到一个随着时间变化的频谱图,这个就是描述语音信号的spectrogram声谱图。
下图是一段语音的声谱图,很黑的地方就是频谱图中的峰值(共振峰formants)。
那我们为什么要在声谱图中表示语音呢?
首先,音素(Phones)的属性可以更好的在这里面观察出来。另外,通过观察共振峰和它们的转变可以更好的识别声音。隐马尔科夫模型(Hidden Markov Models)就是隐含地对声谱图进行建模以达到好的识别性能。还有一个作用就是它可以直观的评估TTS系统(text to speech)的好坏,直接对比合成的语音和自然的语音声谱图的匹配度即可。
二、倒谱分析(Cepstrum Analysis)
下面是一个语音的频谱图。峰值就表示语音的主要频率成分,我们把这些峰值称为共振峰(formants),而共振峰就是携带了声音的辨识属性(就是个人身份证一样)。所以它特别重要。用它就可以识别不同的声音。
既然它那么重要,那我们就是需要把它提取出来!**我们要提取的不仅仅是共振峰的位置,还得提取它们转变的过程。所以我们提取的是频谱的包络(Spectral Envelope)。**这包络就是一条连接这些共振峰点的平滑曲线。
我们可以这么理解,将原始的频谱由两部分组成:包络和频谱的细节。这里用到的是对数频谱,所以单位是dB。那现在我们需要把这两部分分离开,这样我们就可以得到包络了。
那怎么把他们分离开呢?也就是,怎么在给定log X[k]的基础上,求得log H[k] 和 log E[k]以满足log X[k] = log H[k] + log E[k]呢?
为了达到这个目标,我们需要Play a Mathematical Trick。这个Trick是什么呢?就是对频谱做FFT。在频谱上做傅里叶变换就相当于逆傅里叶变换Inverse FFT (IFFT)。需要注意的一点是,我们是在频谱的对数域上面处理的,这也属于Trick的一部分。这时候,在对数频谱上面做IFFT就相当于在一个伪频率(pseudo-frequency)坐标轴上面描述信号。
由上面这个图我们可以看到,包络是主要是低频成分(这时候需要转变思维,这时候的横轴就不要看成是频率了,咱们可以看成时间),我们把它看成是一个每秒4个周期的正弦信号。这样我们在伪坐标轴上面的4Hz的地方给它一个峰值。而频谱的细节部分主要是高频。我们把它看成是一个每秒100个周期的正弦信号。这样我们在伪坐标轴上面的100Hz的地方给它一个峰值。
把它俩叠加起来就是原来的频谱信号了。
在实际中咱们已经知道log X[k],所以我们可以得到了x[k]。那么由图可以知道,h[k]是x[k]的低频部分,那么我们将x[k]通过一个低通滤波器就可以得到h[k]了!没错,到这里咱们就可以将它们分离开了,得到了我们想要的h[k],也就是频谱的包络。
x[k]实际上就是倒谱Cepstrum(这个是一个新造出来的词,把频谱的单词spectrum的前面四个字母顺序倒过来就是倒谱的单词了)。而我们所关心的h[k]就是倒谱的低频部分。h[k]描述了频谱的包络,它在语音识别中被广泛用于描述特征。
那现在总结下倒谱分析,它实际上是这样一个过程:
1)将原语音信号经过傅里叶变换得到频谱:X[k]=H[k]E[k];
只考虑幅度就是:|X[k] |=|H[k]||E[k] |;
2)我们在两边取对数:log||X[k] ||= log ||H[k] ||+ log ||E[k] ||。
3)再在两边取逆傅里叶变换得到:x[k]=h[k]+e[k]。
这实际上有个专业的名字叫做同态信号处理。它的目的是将非线性问题转化为线性问题的处理方法。对应上面,原来的语音信号实际上是一个卷性信号(声道相当于一个线性时不变系统,声音的产生可以理解为一个激励通过这个系统),第一步通过卷积将其变成了乘性信号(时域的卷积相当于频域的乘积)。第二步通过取对数将乘性信号转化为加性信号,第三步进行逆变换,使其恢复为卷性信号。这时候,虽然前后均是时域序列,但它们所处的离散时域显然不同,所以后者称为倒谱频域。
总结下,倒谱(cepstrum)就是一种信号的**傅里叶变换经对数运算后再进行傅里叶反变换得到的谱。**它的计算过程如下:
三、Mel频率分析(Mel-Frequency Analysis)
好了,到这里,我们先看看我们刚才做了什么?给我们一段语音,我们可以得到了它的频谱包络(连接所有共振峰值点的平滑曲线)了。但是,对于人类听觉感知的实验表明,人类听觉的感知只聚焦在某些特定的区域,而不是整个频谱包络。
而Mel频率分析就是基于人类听觉感知实验的。实验观测发现人耳就像一个滤波器组一样,它只关注某些特定的频率分量(人的听觉对频率是有选择性的)。也就说,它只让某些频率的信号通过,而压根就直接无视它不想感知的某些频率信号。但是这些滤波器在频率坐标轴上却不是统一分布的,在低频区域有很多的滤波器,他们分布比较密集,但在高频区域,滤波器的数目就变得比较少,分布很稀疏。
人的听觉系统是一个特殊的非线性系统,它响应不同频率信号的灵敏度是不同的。**在语音特征的提取上,人类听觉系统做得非常好,它不仅能提取出语义信息, 而且能提取出说话人的个人特征,这些都是现有的语音识别系统所望尘莫及的。**如果在语音识别系统中能模拟人类听觉感知处理特点,就有可能提高语音的识别率。
梅尔频率倒谱系数(Mel Frequency Cepstrum Coefficient, MFCC)考虑到了人类的听觉特征,先将线性频谱映射到基于听觉感知的Mel非线性频谱中,然后转换到倒谱上。
将普通频率转化到Mel频率的公式是:
由下图可以看到,它可以将不统一的频率转化为统一的频率,也就是统一的滤波器组。
在Mel频域内,人对音调的感知度为线性关系。举例来说,如果两段语音的Mel频率相差两倍,则人耳听起来两者的音调也相差两倍。
四、Mel频率倒谱系数(Mel-Frequency Cepstral Coefficients)
我们将频谱通过一组Mel滤波器就得到Mel频谱。公式表述就是:log X[k] = log (Mel-Spectrum)。这时候我们在log X[k]上进行倒谱分析:
1)取对数:log X[k] = log H[k] + log E[k]。
2)进行逆变换:x[k] = h[k] + e[k]。
在Mel频谱上面获得的倒谱系数h[k]就称为Mel频率倒谱系数,简称MFCC。
现在咱们来总结下提取MFCC特征的过程:(具体的数学过程网上太多了,这里就不想贴了)
1)先对语音进行预加重、分帧和加窗;
2)对每一个短时分析窗,通过FFT得到对应的频谱;
3)将上面的频谱通过Mel滤波器组得到Mel频谱;
4)在Mel频谱上面进行倒谱分析(取对数,做逆变换,实际逆变换一般是通过DCT离散余弦变换来实现,取DCT后的第2个到第13个系数作为MFCC系数),获得Mel频率倒谱系数MFCC,这个MFCC就是这帧语音的特征;
这时候,语音就可以通过一系列的倒谱向量来描述了,每个向量就是每帧的MFCC特征向量。