时间限制:1.0s 内存限制:256.0MB
问题描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。
输入格式
输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)
接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值
输出格式
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 2 2
1 2
2 1样例输出
2
样例输入
2 3 2
1 2 3
2 1 5样例输出
14
解题思路
搜索+记忆化 ,不记忆化会超时;或者递推。 这就是dp! dp[ x][ y][ took][ maxx]表示到达( x, y)位置时,已经拿了took个宝贝,最大价值为maxx。
AC代码
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const long long mod = 1000000007;
int dp[55][55][14][14]; //dp x y i j 在x,y 处,已经拿了i个东西,最大价值为j时的可行解
int mp[55][55],n,m,k;
int next[2][2]={{0,1},{1,0}};
int dfs(int x,int y,int took,int maxx)
{
if(dp[x][y][took][maxx] != -1) //走过了
return dp[x][y][took][maxx];
if(x == n && y == m) {
if(took == k) {
dp[x][y][took][maxx] = 1;
return dp[x][y][took][maxx];
}
else if(took == k-1) {
if(mp[x][y] > maxx)
dp[x][y][took][maxx] = 1;
else
dp[x][y][took][maxx] = 0;
return dp[x][y][took][maxx];
}
}
int tx,ty,tot=0;
for(int i=0;i<2;i++) {
tx = x+next[i][0];
ty = y+next[i][1];
if(tx > n || ty > m)
continue;
if(mp[x][y] > maxx)
tot = (tot+dfs(tx,ty,took+1,mp[x][y]))%mod; //取
tot = (tot+dfs(tx,ty,took,maxx))%mod; //不取
}
dp[x][y][took][maxx] = tot;
return dp[x][y][took][maxx];
}
int main()
{
cin >> n >> m >> k;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++) {
cin >> mp[i][j];
mp[i][j]++; //价值可能为0 ,选不选分不清
}
memset(dp,-1,sizeof dp);
cout << dfs(1,1,0,0);
return 0;
}