蓝桥杯PREV-28 地宫寻宝 【动态规划】

本文介绍了一个基于动态规划的算法解决方案,用于解决一个地宫寻宝问题。小明在一个n*m的矩阵中寻找宝藏,从左上角出发,只能向右或向下移动,目标是在出口处恰好收集到k件宝贝。文章详细解释了如何通过搜索+记忆化的方法,避免重复计算,高效找到所有可能的路径。
摘要由CSDN通过智能技术生成

时间限制:1.0s   内存限制:256.0MB

问题描述

  X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。

  地宫的入口在左上角,出口在右下角。

  小明被带到地宫的入口,国王要求他只能向右或向下行走。

  走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。

  当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。

  请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。

输入格式

  输入一行3个整数,用空格分开:n m k (1<=n,m<=50, 1<=k<=12)

  接下来有 n 行数据,每行有 m 个整数 Ci (0<=Ci<=12)代表这个格子上的宝物的价值

输出格式

  要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。

样例输入

2 2 2
1 2
2 1

样例输出

2

样例输入

2 3 2
1 2 3
2 1 5

样例输出

14

解题思路 

搜索+记忆化 ,不记忆化会超时;或者递推。  这就是dp!  dp[ x][ y][ took][ maxx]表示到达( x, y)位置时,已经拿了took个宝贝,最大价值为maxx。

AC代码

 

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const long long mod = 1000000007;
int dp[55][55][14][14]; //dp x y i j 在x,y 处,已经拿了i个东西,最大价值为j时的可行解 
int mp[55][55],n,m,k; 
int next[2][2]={{0,1},{1,0}};
int dfs(int x,int y,int took,int maxx)
{
	if(dp[x][y][took][maxx] != -1)	//走过了 
		return dp[x][y][took][maxx];
		 
	if(x == n && y == m) {
		if(took == k) {
			dp[x][y][took][maxx] = 1;
			return dp[x][y][took][maxx];
		}
		else if(took == k-1) {
			if(mp[x][y] > maxx) 
				dp[x][y][took][maxx] = 1;
			else
				dp[x][y][took][maxx] = 0;
			return dp[x][y][took][maxx];
		} 
	}
	
	int tx,ty,tot=0;
	for(int i=0;i<2;i++) {
		tx = x+next[i][0];
		ty = y+next[i][1];
		if(tx > n || ty > m)
			continue;
		if(mp[x][y] > maxx) 
			tot = (tot+dfs(tx,ty,took+1,mp[x][y]))%mod;	//取 
		tot = (tot+dfs(tx,ty,took,maxx))%mod; //不取 
	}
	dp[x][y][took][maxx] = tot;
	return dp[x][y][took][maxx]; 
}
int main()
{
	cin >> n >> m >> k;
	for(int i=1;i<=n;i++) 
		for(int j=1;j<=m;j++) {
			cin >> mp[i][j];
			mp[i][j]++;	//价值可能为0 ,选不选分不清 
		}
	
	memset(dp,-1,sizeof dp);
	
	cout << dfs(1,1,0,0); 
	
	return 0;
} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值