学习笔记——DL、RL、DRL的相关知识以及联系(一)

本文是深度学习的学习笔记,涵盖了深度学习的基础概念,包括人工神经元模型、网络架构类型和工作过程。同时强调了深度学习的特点,如模型结构的深度和特征学习的重要性。
摘要由CSDN通过智能技术生成

深度学习(DL,Deep Learing)

深度学习基本概念,作学习笔记使用,资料链接在文末

学习样本数据的内在规律和表示层次,最终目标时让机器能够像人一样具有分析、学习能力。

几个应用领域:搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语言、推荐和个性化技术。

一、简介

深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:

  • 基于卷积计算的神经网络系统,即卷积神经网络(CNN)
  • 基于多层神经元的自编码神经网络,包括自编码(Auto encoder)和稀疏编码(Sparse coding)
  • 以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络全职的深度置信网络(DBN)

深度学习通过多层处理,逐渐将初始的“底层”特征转化为“高层”特征,用“简单模型”完成复杂的分类等学习任务。据此可将深度学习理解为进行“特征学习”或“表示学习”

二、几个概念

(一)人工神经元模型

人工神经网络(NN&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值