深度学习(DL,Deep Learing)
深度学习基本概念,作学习笔记使用,资料链接在文末
学习样本数据的内在规律和表示层次,最终目标时让机器能够像人一样具有分析、学习能力。
几个应用领域:搜索技术、数据挖掘、机器学习、机器翻译、自然语言处理、多媒体学习、语言、推荐和个性化技术。
一、简介
深度学习是一类模式分析方法的统称,就具体研究内容而言,主要涉及三类方法:
- 基于卷积计算的神经网络系统,即卷积神经网络(CNN)
- 基于多层神经元的自编码神经网络,包括自编码(Auto encoder)和稀疏编码(Sparse coding)
- 以多层自编码神经网络的方式进行预训练,进而结合鉴别信息进一步优化神经网络全职的深度置信网络(DBN)
深度学习通过多层处理,逐渐将初始的“底层”特征转化为“高层”特征,用“简单模型”完成复杂的分类等学习任务。据此可将深度学习理解为进行“特征学习”或“表示学习”
二、几个概念
(一)人工神经元模型
人工神经网络(NN&#x