前言
案例内容来自明略科技、金数据和浩克联合发布的 2022《客户体验管理白皮书》,获取完整报告请见文章底部。
本文仅用作分享、交流学习。
汽车行业客户体验管理实践
随着数字化转型的深入,体验为王的时代已然来临,车企急需立足客户视角,了解潜在车主和已有车主在与车企交互过程中的真实需求及反馈,以优化服务流程,全面提升车主体验。
1. 购车的客户旅程
从车主的客户旅程来看。
在购车阶段,潜在车主前期需要了解品牌、咨询一线销售人员,再到门店预约试驾,最终完成下单购买,期间会通过各种各样的线上线下渠道触点与车企产生交互。
在用车阶段,车主会通过车主 APP 与车企产生大量的日常交互,以及前往线下门店进行保养维修,乃至最后对车辆进行处置,都会与车企产生交互。
而这些过程中的体验感受,最终形成了客户对该车企的整体体验。
图片:车主客户旅程
2. 客户体验管理实施的难点
某车企在实施客户体验管理时,遇到了两个问题:
1) 体验数据如何支撑行为数据,做根因分析
该车企投入大量资源打通了多个线上渠道业务,包括官网、微信公众号、小程序、 APP 等,引导潜在车主通过线上渠道完成车型浏览、在线咨询、预约试驾等过程。
为提升客户线上渠道体验,该车企开发上线了智能监测系统,通过获取客户在不同渠道、不同页面中的行为数据,了解客户行为轨迹及渠道偏好,帮助优化线上资源配置。
但在实际业务过程中遇到以下难点:仅靠渠道偏好、页面浏览时长、页面跳离率等行为数据难以得知客户行为背后的具体原因,无法知晓客户在某一页面因何流失、在某一页面停留过长时有何困难等。
Guofu:
数据背后的因果关系,并不能直接从数据获取。
强相关不代表因果,因果关系会存在随机性,会存在噪音,所以因果关系并不能期待它解释所有现象。
在某些特定的场景下,或者大数据支持的背景下,强相关或许可以极大逼近因果。如迈尔舍恩伯格在《大数据时代》里说,“要相关,不要因果”,在大数据时代,有相关,就够了。
2) 业务数据如何支撑体验管理,做精准调研
该车企的车主 APP 是客户活跃度非常高的平台,包括日常用车的功能操作、用车行为统计、车主论坛、积分中心等功能。
以往,该车企经常会对车主做全量的问卷调研,再拆分数据来源渠道,进行后续的数据分析。
但这种调研方式面临着分析结果波动大、问卷回收率低、无法针对特定群体做定向调研、无法做单个客户分析、问题无法闭环等难题。
Guofu:
用户分层才能有针对性,千人千面。
客户体验追求的是能够为客户提供个性化的产品或服务。
一般可以通过用户价值、漏斗模型、个性特征、需求区隔以及身份区隔进行分层。
也可以结合业务或行为,如购物频次、商品组合等。
3. 融合型客户体验管理系统
针对上述两个问题,该车企搭建了基于“行为数据+体验数据+业务数据”融合的客户体验管理系统,以实现多维度的分析洞察。
图片:某车企客户体验管理解决方案
首先,在客户体验管理系统中接入客户旅程,并在每个旅程下建立关键场景,针对场景下的关键触点投放问卷,全链路收集客户体验数据;
其次,通过客户 ID 进行跨渠道、跨触点的数据整合,串联客户在各个旅程、各个触点下的体验反馈数据及预警触发事件,针对每个客户形成完整的客户轨迹图,帮助车企认清客户全链路体验状况,以便有的放矢地进行服务流程优化;
Guofu:
跨渠道身份识别串联旅程,体验设计需要以整个旅程中心,而不是单个交互。
移动性增强,用户会在不同设备间切换,全渠道无缝性体验是充分必要条件。
在任何渠道都能获得愉悦的体验可以成为你和竞争者的重要分水岭。
最后,通过客户 ID 及开放接口,实现多系统数据的互联互通,整合监测系统获取的客户行为数据、客户体验系统获取的客户体验数据以及企业自身拥有的业务数据,帮助车企实现客户的 360 度全视角分析。
4. 问卷版块的挑战
在整个项目开展过程中,该车企在对车主进行精准调研时遇到了问卷板块的挑 战。由于希望获得更为客观且能够交叉验证的体验数据,问卷需要包含上百道题目。
虽然采用了送积分和优惠券的方式,车主有意愿完成长问卷的填写,但问卷仍需根据客户标签、渠道偏好、行为数据、属性等控制题目的显示,实现千人千面的精准调研,这就对问卷逻辑规则带来了前所未有的复杂度。
面临上述挑战,该车企对此类专项调研中所涉及的问卷逻辑规则进行了全面梳 理,并在系统实现层面,对问卷板块的逻辑规则进行了分类设计:
1) 对问卷题目内的选项逻辑进行设计,例如根据选择内容显示不同的题目等;
2) 对问卷题目的分段式随机显示逻辑进行设计,例如根据某个选项从题库中随机选取指定数量的题目进行显示等;
3) 对问卷填答过程的逻辑进行设计,例如根据规则控制客户填至某题自动结束等;
4) 对问卷整体的逻辑进行设计,可以通过传递参数的方式进行上述规则的控制等。
Guofu:
复杂的事情交给计算机,创造性的事情交还给人。
问卷设计可以让计算机提供个性化推荐题项参考,人设计实验进行推论验证。
5. 客户体验管理体系的商业价值
通过客户体验管理系统的支撑,该车企构建了成熟的客户体验管理体系,为业务和决策贡献了巨大价值。
第一,产品体验优化。
体验数据帮助该车企深入探究客户行为背后的原因。在对渠道偏好、页面浏览时长、页面跳离率等行为数据进行基础分析后,结合体验数据,分析客户在渠道偏好背后的具体原因、某页面浏览时间较长时遇到哪些问题,以及某些页面跳离率高的具体原因是什么等。
据此判断关键渠道中流程的合理性,有针对性地进行页面优化,如降低客户常用、难找的菜单层级,去掉容易导致客户跳离的冗余内容等。
第二,线索价值判断。
对于预约试驾中的线索客户,以预留信息为基础,结合预约试驾后获取到的体验数据,对线索价值进行判断,区分高价值线索客户及低价值线索客户,销售顾问在线索跟进过程中可根据线索价值进行合理安排,避免资源浪费的同时,提升线索转化率。
项目实施一年后,该车企在预约试驾中的线索转化率提升了 25%,取得了较好的成果。
第三,服务流程改造。
对于已购车主,通过车主 APP 进行了精准而又个性化的投放,及时获取车主的体验反馈数据,了解服务过程中的体验情况,挖掘车主在用车、保养、维修等服务中的不同需求,帮助车企进行服务流程的改造升级,为车主提供差 异化的服务,提升车主对关键服务的满意度,打造良好的传播口碑。
项目实施一年后,车主对该车企重点服务的平均满意度提升 15%,老客户转介绍比例提升 20%。
公众号后台回复【40】获取完整报告。