Pytorch:三、数据的迭代训练(猫狗)

import torch
import divide
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from model import Net

epochs = 10    #迭代训练五次
cirterion = nn.CrossEntropyLoss()    #定义损失函数
optimizer = optim.SGD(Net.parameters(), lr=0.0001, momentum=0.9)    #定义优化器

for epoch in range(epochs):
        running_loss = 0    #损失值
        train_correct = 0    #分类样本正确的总数
        train_total = 0    #分类样本总数
        for i, data in enumerate(divide.train_loader, 0):
            inputs, train_labels = data
            inputs, labels = Variable(inputs), Variable(train_labels)
            optimizer.zero_grad()
            outputs = Net(inputs)
            _, train_predicted = torch.max(outputs.data, 1)
            itrain_correct += (train_predicted == labels.data).sum()
            loss = cirterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
            train_total += train_labels.size(0)

        print('train %d epoch loss: %.3f  acc: %.3f ' % (
            epoch + 1, running_loss / train_total, 100 * train_correct / train_total))

print('finished training!')


运行:

train 1 epoch loss: 0.172  acc: 56.029 
train 2 epoch loss: 0.163  acc: 62.057 
train 3 epoch loss: 0.155  acc: 65.274 
train 4 epoch loss: 0.149  acc: 68.006 
train 5 epoch loss: 0.144  acc: 70.131 
train 6 epoch loss: 0.139  acc: 71.749 
train 7 epoch loss: 0.135  acc: 72.994 
train 8 epoch loss: 0.130  acc: 74.360 
train 9 epoch loss: 0.126  acc: 75.486 
train 10 epoch loss: 0.122  acc: 76.520 
finished training!

  1. 定义epoch:迭代训练的次数
  2. 定义cirterion、optimizer:损失函数、优化器
  3. 使用循环语句进行数据的迭代训练,一共迭代训练epoch次
  4. runing_loss:总损失值、train_correct:分类正确总数量、train_total:训练图片总数量
  5. enumerate返回两个值,i是下标,由enumerate()函数给定,data表示数据,数据包括Tensor(图像)与标签
  6. input存储Tensor,train_labels存储标签,将这两个参数设置为Variable,表示参数存储的值是随着训练不断更新的
  7. zero_grad()将梯度置零,将损失值关于权重的导数置零,每次训练不同的batch,将上一个batch反向传播训练的导数置零,也就是优化器权重的清除
  8. Tensor传入神经网络模型Net
  9. torch.max返回两个值,第一个值是tensor中每行最大值,第二个值是最大值的索引,最大值就是神经网络判断属于各种类别概率值中的最大概率值,索引就是这个概率值最大的类别
  10. 用train_predicted存储这个索引,即神经网络判断出的类别,概率不记录
  11. 如果这个类别与实际的类别相同即分类正确,我们将train_correct进行+1操作,记录分类正确图片总数量
  12. 将神经网络判断出的类别与正确类别传入loss中计算损失值,再进行loss的反向传播,使用step()进行优化器权重的更新
  13. 将损失值相加记录总损失值
  14. size(0)表示train_labels的第一维度,就是每次训练图片的数量:batch_size的大小,求和并由train_total记录,表示训练图片总数量
  15. 输出:running_loss / train_total为平均的损失值,train_correct / train_total为正确率
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丁天牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值