逻辑回归
以线性回归为基础,逻辑回归可以处理更加复杂的非线性拟合曲线。
较线性回归相比,逻辑回归的改动,就是在的基础上添加了sigmoid函数运算g(z),如下图所示。
以(0,1)区分预测正负样本,阈值通常取0.5.
逻辑回归的凸函数
线性回归的计算方法,是通过计算差值最小值求得模型最佳的拟合曲线,方法使用到了梯度下降。
逻辑回归的运算方法我们同样使用梯度下降进行极小值的寻找,但因为逻辑回归中包含sigmoid函数,所以求得的曲线比较复杂,所以在曲线比较波折的时候,使用梯度下降很容易陷入一个局部极小值中,我们需要把这种复杂函数变为凸函数,以便求的最小值,如下图所示。
为了得到一个凸函数,求得最小值点,使用极大似然估计,将代价函数进行修改,以cost()函数替换代价函数。
代价函数通过极大似然估计替换为下面这个函数
由公式可知,当y=1时,如果也等于1,cost则等于0,成本就为0,证明分类结果没有带来什么代价,证明预估是合理的。但 y=1时,如果等于0,则此时的代价函数趋向于正无穷,代价极高,证明分类出现问题。
同理, 当y=0时,如果也等于0,cost则等于0,成本就为0,证明预估是合理的。但y=0时, 如果等于1,则此时的代价函数趋向于正无穷,代价极高,证明分类出现问题。
梯度下降:
将复杂的代价函数优化为凸函数后,我们就可以使用梯度下降进行计算最小代价函数,将极大似然估计的函数带入到代价函数中,过程如下所示。
最终整合得到一个新的代价函数,就是图中的
将这个代价函数带入到梯度下降的公式中,对代价函数的求偏导。如下所示,求导后得到的公式与线性回归的梯度下降规则表面相同。因为在上面提到过将的定义进行了改变,在的基础上添加了sigmoid函数运算g(z)。
通过这个梯度下降函数,我们就可以改变学习率进而控制模型效果。