数组迭代

数组迭代

Numpy 提供除for外更为优雅的遍历方法
apply_along_axis(func1d, axis, arr)
  • 例子:
    x = np.array([[ 11 , 12 , 13 , 14 , 15 ],
    [ 16 , 17 , 18 , 19 , 20 ],
    [ 21 , 22 , 23 , 24 , 25 ],
    [ 26 , 27 , 28 , 29 , 30 ],
    [ 31 , 32 , 33 , 34 , 35 ]])
    def my_func (x):#自己定义一个计算函数
    return (x[ 0 ] + x[- 1 ]) * 0.5
    y = np.apply_along_axis(my_func, 0 , x)#axis=1表示横轴,方向从左到右;axis=0表示纵轴,方向从上到下。
    print (y) # [21. 22. 23. 24. 25.]

数组操作

更改形状

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浪里摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值