Tensorflow GPU版本安装教程,非常详细,建议收藏

Tensorflow GPU版本安装教程,非常详细,建议收藏


前言

我自己看了很多教程终于搞明白了。。。
接下来给大家分享一下,请大家一定按照步骤详细阅读全文,不然可能会掉坑里


一、安装Anaconda

这一步比较简单,也没有太多的需要注意的,去官网下载即可
官网下载传送门
在这里插入图片描述

二、安装前的准备工作

1.检查版本

我们需要检查的版本有:python的版本,cuda的版本(带n卡的电脑一般会默认安装好了cuda的driver包,但是tensoflow-gpu所需要的其他cuda组件仍然需要安装)

1.1 python版本查看:

在开始菜单栏打开Anaconda Prompt,以管理员身份运行,输入python,回车即可
在这里插入图片描述
在这里插入图片描述

1.2 cuda driver版本查看:

按下图操作查看版本号

在这里插入图片描述

2.Tensorflow官网寻找适合自己的版本号

注意CUDA版本与显卡的对应关系,注意tensorflow-gpu和cuDNN之间版本的对应,版本对应关系具体请参考Tensorflow官网,如下图所示:
在这里插入图片描述
CDNN下载链接
CUDA下载链接
在这里插入图片描述

博主自己选择的版本发出来供大家参考:
注意!!!!
我们下载的cuda版本一定要低于或等于我们刚刚在英伟达控制面板查看的cuda driver版本
在这里插入图片描述

3.安装cuda和cdnn

3.1 安装cuda

在这里插入图片描述
这里如果已经有了cuda driver(就是我们之前在英伟达控制面板看到的版本号)了的话,就取消勾选
在这里插入图片描述

3.2 安装cdnn

将cdnn解压以后的所有文件复制到cuda安装目录
在这里插入图片描述

4.创建虚拟conda环境

由于我在base环境中已经装过了pytorch以及其他很多组件,这里我们最好是给tensorflow单独创建一个虚拟环境。

conda create -n tensorflow_gpu python=3.8

激活环境

activate tensorflow_gpu

在这里插入图片描述

5.使用pip安装tensorflow-gpu

5.1 使用清华镜像

临时使用
package-name为你要下载的包名

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple package-name

永久使用

pip install pip -U 
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

5.2 安装tensorflow-gpu

选择之前找到的适合自己的版本

pip install tensorflow-gpu-x.x.x

我这里不带版本号默认下载了最新版
在这里插入图片描述
安装成功示意图
在这里插入图片描述
接下来测试一下是否可以使用了

import tensorflow as tf
print(tf.__version__)
print(tf.test.is_gpu_available())

在这里插入图片描述
在这里插入图片描述
成功了!!

6.在Pycharm中使用

在这里插入图片描述
在如图所示目录找到我们配置的tensorflow_gpu虚拟环境,选择python.exe
在这里插入图片描述
恭喜你已经成功配置好了所有环境,可以开始撸代码了!

总结

以上就是所有的内容了,谢谢大家。
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值