目前,网上存在诸多版本的tensoeflow-gpu安装教程。但是总体的步骤繁多,稍有不注意便安装错误,耗时耗力。
总结以下简易版安装教程,易上手,经过实验(给导当过助教,一个班的同学使用证明),安装成功不是问题(安装总耗时不超过15min)
本文提供的方法不需要手动安装cuda与cudnn,只需要安装anaconda或者miniconda
tensorflow-gpu版本与python版本是有对应支持的,可通过以下连接查找对用的版本关系
1.安装anaconda 或者是miniconda(用以创建虚拟环境)本文使用的是miniconda
这两个随便安装一个即可。miniconda是anaconda的简化版本。进官网安装即可,无过多注意事项,(安装中出现recommend直接勾选,安装就可以了)
!!!但是安装路径更改在自己知道的盘中,要用到,默认的盘不好找,所以改一下!!!(我的安装路径是D:\anaconda\)
anaconda下载官网:Download Anaconda Distribution | Anacondahttps://www.anaconda.com/download
miniconda下载官网:Miniconda — Anaconda documentationhttps://docs.anaconda.com/miniconda/
2.安装完成后需要在window的开始页面栏下找到miniconda,打开文件夹下的Anaconda Prompt 进入命令页面(下载anaconda的也是打开这个指令)
3.设置虚拟环境,按照以下步骤即可
①输入以下指令
conda create -n testing python=3.6
### testing为自己创建的虚拟环境名称,可以随意更改,3.6可更换为所需要的版本
在安装过程中,会出现下列情况,回车键就行了
② 创建好虚拟环境后,设置pip的源
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple
③ 激活创建的虚拟环境
conda activate testing ###testing 是①中的虚拟环境名称
④ 安装所需要的tensorflow-gpu的版本,输入以下指令:
conda install tensorflow-gpu=2.1 ###把2.1更改为所需要的版本
等待安装完成即可
可以关闭anaconda promptl了,接下来用不到了
4.配置环境,在pycharm中使用这个虚拟环境 创建的虚拟环境将会存在于刚才设置的路径D:\anaconda\envs\testing ## testing是自己创建的虚拟环境名
①安装pycharm社区版(免费)
下载链接
无过多注意事项,直接安装,出现下列直接全部勾选
② 运行软件,添加解释器
③ 选择exsting 选择之前创建的虚拟环境路径下的 python.exe
到此安装全部结束,直接可以使用
最后一步查看安装是否成功
创建python程序
import tensorflow as tf
version=tf.__version__ #输出tensorflow版本
gpu_ok=tf.test.is_gpu_available() #输出gpu可否使用(True/False)
print("tf version:",version,"\nuse GPU:",gpu_ok)