不同路径
题目链接:力扣
题外话:这题拿到的时候就发现其实是小学三年级的奥数题,甚至寒假看我妹做过【笑哭😂】
- 确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。 - 确定递推公式
想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
所以 dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。 - dp数组的初始化
dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,dp[0][j]也同理均为1 - 确定遍历顺序
由dp[i][j] = dp[i - 1][j] + dp[i][j - 1]递推公式可知,dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历即可。 - 举例推导dp数组
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>>dp(m,vector<int>(n,0));
for(int i=0;i< n;i++)
dp[0][i] = 1;
for(int i=0;i< m;i++)
dp[i][0] = 1;
for(int i=1; i<m;i++)
for(int j=1;j<n;j++)
{
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
return dp[m-1][n-1];
}
};
不同路径 II
题目链接:力扣
这题和上一题相比,多了障碍物。那么在初始化时,有障碍物的地方及其之后的数(因为有障碍物就说明这一行障碍物之后都无法再走了)都设为0,在递推赋值的时候,碰到障碍物,则在该点设为0。
- 确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。 - 确定递推公式
与上题一样dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话就设为dp[i][j] = 0; -
dp数组的初始化
因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。
但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。 -
确定遍历顺序
同上题 -
举例推导dp数组
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<vector<int>>dp(m, vector<int>(n,0));
for(int i=0; i<n; i++)
{
if(!obstacleGrid[0][i]) //没有障碍物则是1
dp[0][i] = 1;
else //有障碍物则是初始值0,后面均不再赋值
break;
}
for(int i=0; i<m; i++)
{
if(!obstacleGrid[i][0]) //没有障碍物则是1
dp[i][0] = 1;
else //有障碍物则是初始值0,后面均不再赋值
break;
}
for(int i=1; i<m; i++)
for(int j=1; j<n; j++)
{
if(obstacleGrid[i][j])
dp[i][j]=0;
else
dp[i][j]=dp[i-1][j]+dp[i][j-1];
}
return dp[m-1][n-1];
}
};