代码随想录算法训练营第三十九天| 62.不同路径 、63. 不同路径 II

文章介绍了如何使用动态规划解决两种路径问题:一是没有障碍物的地图上找到从起点到终点的不同路径数量,二是考虑了障碍物的情况。关键在于初始化dp数组,然后通过递推公式dp[i][j]=dp[i-1][j]+dp[i][j-1]更新每个位置的路径数,遇到障碍物时将路径数设为0。
摘要由CSDN通过智能技术生成

不同路径 

题目链接:力扣

题外话:这题拿到的时候就发现其实是小学三年级的奥数题,甚至寒假看我妹做过【笑哭😂】

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] :表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。
  2. 确定递推公式
    想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
    所以 dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
  3. dp数组的初始化
    dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,dp[0][j]也同理均为1
  4. 确定遍历顺序
    由dp[i][j] = dp[i - 1][j] + dp[i][j - 1]递推公式可知,dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历即可。
  5. 举例推导dp数组

class Solution {
public:
    int uniquePaths(int m, int n) {

        vector<vector<int>>dp(m,vector<int>(n,0));

        for(int i=0;i< n;i++)
          dp[0][i] = 1;
        for(int i=0;i< m;i++)
          dp[i][0] = 1;

        for(int i=1; i<m;i++)
         for(int j=1;j<n;j++)
         {
             dp[i][j] = dp[i-1][j] + dp[i][j-1];
         }

         return dp[m-1][n-1];
                  

    }
};

 不同路径 II 

题目链接:力扣 

 这题和上一题相比,多了障碍物。那么在初始化时,有障碍物的地方及其之后的数(因为有障碍物就说明这一行障碍物之后都无法再走了)都设为0,在递推赋值的时候,碰到障碍物,则在该点设为0。

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j] :表示从(0,0)出发,到(i, j) 有dp[i][j]条不同的路径。
  2. 确定递推公式
    与上题一样dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
    但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话就设为dp[i][j] = 0;
  3. dp数组的初始化
    因为从(0, 0)的位置到(i, 0)的路径只有一条,所以dp[i][0]一定为1,dp[0][j]也同理。
    但如果(i, 0) 这条边有了障碍之后,障碍之后(包括障碍)都是走不到的位置了,所以障碍之后的dp[i][0]应该还是初始值0。

  4. 确定遍历顺序
    同上题

  5. 举例推导dp数组

 

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {

        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();

        vector<vector<int>>dp(m, vector<int>(n,0));

        for(int i=0; i<n; i++)
        {
            if(!obstacleGrid[0][i])    //没有障碍物则是1
              dp[0][i] = 1;
            else                       //有障碍物则是初始值0,后面均不再赋值
              break;
        }
         
        for(int i=0; i<m; i++)
        {
            if(!obstacleGrid[i][0])   //没有障碍物则是1
              dp[i][0] = 1;
            else                      //有障碍物则是初始值0,后面均不再赋值
              break;
        }

        for(int i=1; i<m; i++)
         for(int j=1; j<n; j++)
         {
             if(obstacleGrid[i][j])
              dp[i][j]=0;
             else
              dp[i][j]=dp[i-1][j]+dp[i][j-1];
         }

         return dp[m-1][n-1];

    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值