【李宏毅2020 ML/DL】P34 More about explainable AI | Attribution, Heatmap, explainable model

该课程回顾了机器学习中的可解释性AI,重点讨论了Attribution的重要性及其方法,如SmoothGrad和Global attribution。讲解了如何通过DeepLIFT和Integrated gradient评估模型的变量影响。此外,探讨了BERT模型的理解局限性,通过Probing技术展示了BERT可能未学习到的结构。课程还涉及了heatmap在CNN解释中的应用,以及创建可解释模型的挑战和策略。
摘要由CSDN通过智能技术生成

我已经有两年 ML 经历,这系列课主要用来查缺补漏,会记录一些细节的、自己不知道的东西。

已经有人记了笔记(很用心,强烈推荐):https://github.com/Sakura-gh/ML-notes

本节内容综述

  1. 助教讲解,日期为4月6日,主讲人杨书文
  2. 首先将背景,对之前内容复习。
  3. 第一部分,Attribution,首先是What and why attribution?
  4. 上节课老师讲过,Local gradient-based,存在一些局限性(如大象鼻子的例子)。在肉眼无法看出来的情况,加一些noise,会影响结果。因此引出SmoothGrad解决Noisy gradient,考虑到了增加噪音来训练。
  5. 接着,引出Global attribution来解决Saturation问题。介绍了Layer-wise relevance propagation(LRP)方法。
  6. 接着,进行Completeness的讨论。衡量变量变化的影响。考虑到了比如DeepLIFTIntegrated gradient方法。
  7. 进行了一个小结,见 Take-away message。现在做 attribution method 很多方法,可能画出来的图很好看,但是未必有意义。后来,有人提出 Sensitivity-n 来衡量你的方法好不好。还提及了 Occlusion-1
  8. 接下来进入 Probing 部分。先介绍了 BERT 的结构,作为背景知识。BERT的每一层做了不同的事;此外,研究者发现BERT可能有理解不到的东西。
  9. Heatmap部分。
  10. 最后的部分,讲解Create an explainable model

小细节

What and why attribution?

What:

  • importance assignment for each input
  • How each INPUT influences OUTPUT in an end-to-end fashion

Why:

  • Know how model utilizes input to produce output
  • Useful for both customers and researchers

SmoothGrad

M ^ c ( x ) = 1 n ∑ 1 n M c ( x + N ( 0 , σ 2 ) ) \hat{M}_c(x) = \frac{1}{n}\sum_{1}^nM_c (x+\mathcal{N}(0, \sigma^2)) M^c(x)=n1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值