本课件的主要内容包括:
-
机器学习工程师需要精通的10种算法
-
上次课程回顾:隐因子模型
-
上次课程回顾:主元分析
-
上次课程回顾:PCA几何描述
-
题外话:数据凝聚
-
PCA计算:交替最小化
-
PCA计算:预测
-
PCA计算:随机梯度
-
PCA的非唯一性
-
高维跨度
-
基、正交性、序贯拟合
-
基于SVD的PCA
-
合成 vs. 分析
-
概率PCA
-
概率PCA泛化
-
要素分析
-
PCA vs. 要素分析
-
要素分析讨论
-
研究ICA的动机
-
盲源分离
-
独立分量分析的应用
-
矩阵分解的限制
-
一个独特的高斯特性
-
PCA vs. ICA
-
独立分量分析
-
ICA在零售采购数据上的应用
英文原文课件下载地址:
http://page5.dfpan.com/fs/cl0c3j32e2a1e229163/
更多精彩文章请关注微信号: