【Mark Schmidt课件】机器学习与数据挖掘——进一步讨论PCA

本课件的主要内容包括:

  1. 机器学习工程师需要精通的10种算法

  2. 上次课程回顾:隐因子模型

  3. 上次课程回顾:主元分析

  4. 上次课程回顾:PCA几何描述

  5. 题外话:数据凝聚

  6. PCA计算:交替最小化

  7. PCA计算:预测

  8. PCA计算:随机梯度

  9. PCA的非唯一性

  10. 高维跨度

  11. 基、正交性、序贯拟合

  12. 基于SVD的PCA

  13. 合成 vs. 分析

  14. 概率PCA

  15. 概率PCA泛化

  16. 要素分析

  17. PCA vs. 要素分析

  18. 要素分析讨论

  19. 研究ICA的动机

  20. 盲源分离

  21. 独立分量分析的应用

  22. 矩阵分解的限制

  23. 一个独特的高斯特性

  24. PCA vs. ICA

  25. 独立分量分析

  26. ICA在零售采购数据上的应用

在这里插入图片描述

在这里插入图片描述

英文原文课件下载地址:

http://page5.dfpan.com/fs/cl0c3j32e2a1e229163/

更多精彩文章请关注微信号:在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值