- 博客(75)
- 收藏
- 关注
原创 智能体记忆管理与多轮对话方法
本文探讨了实现多轮对话的核心问题——上下文记忆保存。文章介绍了两种主要记忆模型:短期记忆(Checkpointer)用于保存对话状态,支持连续对话;长期记忆(BaseStore)存储高密度信息,支持跨会话检索。同时提出了消息裁剪(Trimming)和总结(Summarization)两种优化策略以控制上下文长度。通过代码示例展示了如何使用LangGraph框架实现多轮对话记忆功能,包括预构建Agent和底层API两种实现方式,以及如何结合长期记忆实现跨线程信息召回。这些技术方案为构建具有上下文感知能力的对话
2026-01-08 00:04:22
994
原创 实现ReACT智能体
本文介绍了LangGraph框架中的两个核心:Human In Loop(人在环中)和Time Travel(时间回溯)。Human In Loop允许将人类操作作为工作流节点,实现模型与人工协作的典型场景包括确认操作、信息补充、审核修改和主动决策分支。实现要点包括指定检查点、线程ID管理和中断/恢复机制。Time Travel功能则基于检查点系统,支持回溯到历史状态重新执行,适用于调试、修复和探索分支等场景。文章还提供了代码示例,展示如何构建带人工审核的AI助手工作流,从简单聊天机器人到集
2026-01-07 00:05:42
1854
原创 使用底层API构建图
本文介绍了LangGraph图结构的创建与使用方法, LangGraph通过节点(Nodes)、边(Edges)和状态(State)构建有向有环的处理链路。节点可以是各种可执行功能,边负责数据传递和逻辑控制,状态则统一管理消息传递。文章演示了手动创建加减法图工作流的示例,包含节点定义、边连接和状态传递。同时提出使用Pydantic的BaseModel来增强状态管理的稳定性,通过类型约束提高代码健壮性。最后展示了如何通过Pydantic对状态键和属性进行校验,确保图结构运行时的可靠性。
2026-01-07 00:04:59
1061
原创 LangGraph全家桶使用
LangGraph全家桶提供了一套完整的AI应用开发解决方案,包括开发框架(LangGraph)、监控评估工具(LangSmith)、可视化IDE(LangGraph Studio)、命令行工具(LangGraph CLI)和交互前端(Agent Chat UI)。通过创建天气助手项目示例,展示了如何快速搭建智能体:配置环境变量、定义工具函数、构建主程序,并使用全家桶工具进行调试和交互。该系统实现了从开发到部署的全流程闭环,支持开发者高效构建复杂的AI应用。
2026-01-07 00:04:09
703
原创 构建智能体与工具调用
本文介绍了LangGraph环境的搭建与智能体创建方法。首先通过pip安装LangGraph库,并说明其底层依赖LangChain的大模型接入方式。重点讲解了四种预构建智能体API的特点和适用场景,其中React Agent(推理-执行模式)最为常用。文章详细演示了如何创建自定义工具函数(以天气查询为例),包括参数定义、函数装饰和API调用。最后展示了如何初始化大语言模型并创建React智能体,通过流式调用处理用户查询(如获取北京天气)。整个过程涵盖了环境配置、工具开发到智能体调用的完整流程,为开发者提供了
2026-01-06 00:07:33
1275
原创 LangGraph介绍
LangGraph是LangChain团队推出的新一代智能体开发框架,针对大模型能力进化带来的开发需求变化而设计。相比LangChain的线性工作流模式,LangGraph采用图结构构建工作流,并引入"状态"概念提升灵活性。其技术架构包含三层API,底层兼容LangChain的模型接入和工具调用能力。配套开发工具套件包括运行监控框架LangSmith、可视化调试工具LangGraph Studio和服务部署工具LangGraph CLI,为企业级Agent开发提供全流程支持。Lan
2026-01-06 00:06:24
796
原创 LangServe网路服务
LangServe是LangChain官方提供的工具,可将LangChain的Chain/Agent快速封装为API服务。它支持自动生成OpenAPI文档和交互测试界面,具有简单易用、高性能和灵活扩展等优势。通过示例展示了如何安装LangServe、创建翻译Chain并部署为FastAPI服务,最后演示了通过Web界面、API调用和客户端三种方式访问服务。该工具极大简化了AI模型服务的部署流程,适合快速构建生产级AI应用。
2026-01-06 00:03:34
749
原创 LangSmith监控
LangSmith是LangChain团队开发的SaaS平台,专为基于大型语言模型(LLM)的应用提供调试、测试、评估和监控功能。核心功能包括调用追踪(Trace Tree)、性能指标监控(Telemetry)、运行比对评估(Dataset/Run Comparison)、标签元数据管理(Tagging & Metadata)以及错误监控(Error Tracing)。支持LangChain和非LangChain项目接入,通过API Key实现云端监控。
2026-01-05 00:05:02
759
原创 RAG项目实践
本文介绍了一个基于RAG技术的智能客服系统项目,旨在解决美团业务扩展带来的客服需求激增问题。项目通过结合美团内部文档与大语言模型,实现更智能准确的自动化答复。系统架构包含文档收集、处理、向量化和检索测试四个阶段:首先使用Playwright爬取美团外卖FAQ页面数据;然后通过BeautifulSoup解析HTML文档,提取问题分类、问答内容并存储为结构化JSON格式。该系统支持历史记忆持久化、LCEL链构建和RAG检索功能,能够有效提升客服效率与用户体验。
2026-01-05 00:03:37
1180
原创 RAG向量数据库
本文介绍了LangChain中的VectorStore存储组件和Retrievers检索器组件。VectorStore组件用于非结构化数据的向量化存储与检索,支持多种向量数据库实现如Redis、Elasticsearch等。文章以RedisVectorStore为例,详细展示了如何使用Ollama Embedding模型将文本转换为向量并存储到Redis,以及如何进行相似性检索。Retrievers组件则提供了更通用的非结构化查询接口BaseRetriever,不直接存储文档但能执行检索操作。示例代码
2026-01-05 00:02:58
1001
原创 RAG文本处理
本文介绍了LangChain框架实现RAG(检索增强生成)的核心组件与流程。RAG系统通过文档加载器(如PDF、Markdown等)读取文件,分割为片段后转为向量存入数据库。使用时将用户问题向量化检索相关文本,作为上下文输入大模型生成答案。文章详细解析了文档加载器的工作机制,包括内置加载器使用和自定义实现方法,并以Markdown文件为例展示了文档加载、分割及元数据处理过程。整个流程涉及文档加载、分割、向量化、存储检索及结果生成等多个关键环节,为构建高效RAG应用提供了完整解决方案。
2026-01-04 00:07:41
1175
原创 MCP实践
本文展示了如何通过LangChain框架集成MCP工具,实现天气查询等功能。首先创建了一个基于FastMCP的天气服务端,通过OpenWeather API获取实时天气数据;然后配置MCP服务器连接信息,最后实现LangChain客户端,将MCP工具转换为LangChain可调用的工具。通过Ollama语言模型构建智能代理,用户可通过自然语言查询天气或获取网页内容。该方案实现了外部工具与LangChain的无缝集成,扩展了语言模型的功能边界。
2026-01-04 00:07:07
339
原创 Agent智能体
摘要 Langchain中的Tool和Agent是两个不同层级的概念:Tool是封装具体能力的可调用函数(如查询天气、调用API等),而Agent是决策引擎,负责决定何时调用哪些Tool以及如何处理结果。当任务需要多个Tool协同或复杂决策时(如订机票并查询天气),Agent通过ReAct模式(推理+行动)进行规划执行。Langchain的AgentExecutor负责实际执行操作,支持并行工具调用,如同时查询多个城市的天气数据。实践示例展示了如何创建天气查询Agent,通过并行调用Tool比较不同城市的温
2026-01-04 00:06:17
594
原创 Tool工具调用
Tool机制让大语言模型具备调用外部函数的能力,解决其静态不可交互的局限。通过Function Calling,模型能理解用户请求并生成调用参数,实现实时数据获取、计算、数据库查询等任务。LangChain提供内置工具(搜索、数据库、API等)和自定义工具开发方式,包括@tool装饰器和StructuredTool类。工具工作流程包含定义、注册、调用和结果处理四个步骤,核心依赖工具描述、输入解析和输出格式。示例展示了使用PythonREPLTool执行生成代码,以及自定义加法工具的实现方法。
2026-01-04 00:05:41
886
原创 Memory记忆存储
本文探讨了大语言模型的记忆存储问题及其解决方案。大语言模型本身是无状态的,无法记住上下文对话。为实现多轮对话记忆功能,需要额外模块存储历史信息。LangChain提供了Memory模块,通过ConversationChain或更现代的RunnableWithMessageHistory来实现对话历史管理。文章详细介绍了BaseChatMessageHistory抽象基类及其内存实现InMemoryChatMessageHistory,并通过代码示例展示了如何在实际应用中使用这些组件来保存和调用对话历史
2026-01-03 00:03:30
1153
原创 链式表达式LCEL
LangChain的核心概念是链式调用(Chain),通过组合提示模板、模型和输出解析器等组件形成工作流。LCEL(LangChain表达式语言)提供了一种声明式语法来构建这种流程,具有模块化、可视化数据流和统一接口等特点。Runnable接口定义了链式调用的核心方法(invoke、batch等),所有组件都继承自该接口。基础用法展示了如何通过管道运算符(|)串联提示模板、模型和解析器,实现从用户输入到结构化输出的完整处理链。这种设计使复杂任务分解为可复用组件,提高了开发效率和可维护性。
2026-01-03 00:02:54
766
原创 Parser输出解析器
LangChain输出解析器介绍:输出解析器是将语言模型返回的字符串转换为结构化数据的关键组件,支持JSON、列表等多种格式。主要功能包括格式转换、数据校验和错误处理。常用解析器包括StrOutputParser(字符串)、JsonOutputParser(JSON)、ListOutputParser(列表)等。JsonOutputParser可通过提示词或get_format_instructions()方法生成JSON格式说明,特别适合API调用等场景。ListOutputParser能解析逗号分隔的列
2026-01-03 00:02:12
891
原创 提示模板PromptTemplate
本文介绍了LangChain中的提示词模板(PromptTemplate)及其应用。提示词模板用于优化与大语言模型的交互,通过结构化方式包装用户输入,更清晰地表达意图。文章详细讲解了文本提示词模板的创建方法(构造方法、from_template等),以及部分提示词模板和组合提示词模板的实现技巧。同时介绍了format、invoke和partial三种格式化方法的使用场景,帮助开发者更好地构建和优化提示词,提升与大模型交互的效果。适用于Python开发者使用LangChain框架构建AI应用时参考。
2026-01-02 00:09:56
1266
原创 Model大模型接口
LangChain是一个支持集成多种大语言模型的工具框架,主要包括LLM(文本生成)、ChatModel(对话模型)和Embeddings(文本向量)三类模型。它通过标准化的接口和参数(如temperature、max_tokens等)统一调用方式,支持OpenAI、DeepSeek、Ollama等第三方模型。使用前需配置API密钥环境变量,通过python-dotenv加载密钥。LangChain还定义了消息组件(如AIMessage)来规范模型输出格式,便于构建对话应用。
2026-01-02 00:09:24
1527
原创 LangChain
LangChain是一个基于Python的开源框架,旨在简化基于大型语言模型(LLM)的应用程序开发。它通过模块化设计将LLM与外部数据、工具和记忆组件连接起来,解决LLM的信息过时、无法执行操作和记忆有限三大痛点。 核心功能包括: 统一不同模型API的调用方式 提供现成的链式组装完成特定任务 支持文档加载、向量存储和外部工具集成 主要应用场景包括智能运维、日志分析、K8s故障诊断等。技术体系包含核心库(langchain-core)、主包(langchain)和社区扩展(langchain-communi
2026-01-02 00:08:34
1030
原创 Prompt提示词工程
提示工程(Prompt Engineering),是指设计、编写、优化提示词(prompt)以最大限度发挥大语言模型(LLM)能力的技术和方法。一句话概括,提示工程就是“让 AI 更懂你”的一门技术。通过精心设计输入(prompt),你能引导模型生成你想要的答案、格式、风格或行为。
2026-01-01 13:34:14
767
原创 大模型工具
Ollama是一个开源的本地大模型运行与管理框架,支持离线运行DeepSeek、Qwen等主流开源模型,所有推理与数据处理均在本地完成,保障隐私与低延迟。文章介绍了通过Docker部署Ollama的方法,包括环境变量配置、模型下载建议(根据显存选择合适参数量的模型)以及常用管理命令。最后展示了使用LangChain调用本地模型进行文本生成的示例,验证了Ollama的本地推理能力。该工具特别适合对数据隐私要求高的场景,用户可灵活加载不同模型完成文本生成、问答等NLP任务。
2026-01-01 13:32:34
1198
原创 AI大模型基础
人工智能发展经历了从早期符号系统到当前大模型的演进过程。早期AI依赖人工规则(1950s-1980s),统计机器学习(1980s-2010s)实现了数据驱动学习,而深度学习(2012年起)通过神经网络自动提取特征。当前大模型时代(2020年起)以GPT、BERT等为代表,具有通用性强、多模态处理等特点,参数规模达千亿级。大模型通过预训练+微调方式,展现出零样本学习等能力,成为通向AGI(人工通用智能)的重要路径。AIGC作为大模型的典型应用,已实现文本、图像、音视频等内容生成,推动内容创作范式变革。AI在自
2026-01-01 13:31:31
962
原创 FastAPI框架
FastAPI是一个高性能的Python API框架,基于异步ASGI协议和Pydantic数据校验,相比Flask和Django具有性能更高、开发更快、代码更简洁规范等优势。本文介绍了FastAPI的基本使用,包括创建应用、参数验证、Pydantic模型、路由分发和Request对象处理。通过示例代码展示了路径参数、查询参数、请求体验证等核心功能,以及模块化路由管理的方法。FastAPI自动生成交互式API文档,支持热重载开发模式,是构建现代化API的高效工具。
2025-12-29 23:05:50
949
原创 LangGraph 接入MCP
MCP(模型上下文协议)是Anthropic公司推出的大模型统一通信接口,旨在简化AI模型与外部工具和数据的集成过程。该协议通过标准化客户端(MCP Client)和服务器(MCP Server)之间的通信,解决了传统Function Calling需要编写大量中介代码的问题。
2025-08-12 01:21:45
1053
原创 LangGraph 构建Agent
LangGraph是LangChain团队推出的状态化工作流框架,专为构建复杂多步骤的AI代理和工作流设计。其核心是将AI应用逻辑抽象为图结构,支持循环、分支和状态持久化,适用于需要长期记忆和多轮决策的场景。与LangChain相比,LangGraph更专注于流程管理,两者常结合使用。
2025-08-11 01:22:04
1083
原创 Celery分布式任务队列
Celery是一个分布式任务队列框架,支持异步任务、定时任务和大规模并发处理。其核心组件包括消息中间件Broker(如Kafka)、执行单元Worker、结果存储Backend(如Redis)和定时调度器Celery Beat。
2025-08-10 21:33:20
1525
3
原创 LangChain实现RAG
RAG(检索增强生成)是一种结合信息检索与生成式AI的技术框架,通过从外部知识库检索相关信息来增强大模型的回答准确性,解决幻觉生成和知识过时问题。其核心流程包括知识准备(文档处理与向量化存储)、检索(语义匹配)和生成(基于检索结果回答)。实验表明,RAG能有效补充大模型对特定领域和最新信息的认知不足。通过LangChain实现RAG系统,包含文档加载、文本分块、向量化存储、语义检索和提示增强等关键步骤,最终生成基于检索内容的精准回答。
2025-07-28 00:05:36
962
原创 启发式算法-模拟退火算法
模拟退火算法是一种基于概率的启发式优化算法,用于解决大规模组合优化问题,其灵感来源于金属退火过程中的物理现象。其基本原理是从一个初始解开始,然后在当前解的邻域内随机生成一个新解,如果新解的目标函数值优于当前解,那么就将新解作为当前解,如果新解的目标函数值比当前解差,那么以一定的概率选择新解,这个概率随着算法的进行而逐渐降低,类似于退火过程中温度逐渐降低,物质逐渐趋于稳定状态,通过这种方式算法可以在一定程度上避免陷入局部最优解,搜索到全局最优解。
2025-05-06 23:56:10
1273
原创 启发式算法-禁忌搜索算法
禁忌搜索是一种可以用于解决组合优化问题的启发式算法,通过引入记忆机制跳出局部最优,避免重复搜索。该算法从一个初始解开始,通过邻域搜索策略来寻找当前解的邻域解,并在邻域解中选择一个最优解作为下一次迭代的当前解,为了避免算法陷入局部最优,引入禁忌表来记录已经访问过的操作,禁止算法在一定迭代次数内再次选择这些被禁忌的操作,另外算法可以设置一些特赦条件,使得被禁忌的操作可以解除禁忌,从而探索更优的解空间。
2025-05-05 22:37:38
739
原创 启发式算法-遗传算法
遗传算法是一种受达尔文生物进化论和孟德尔遗传学说启发的启发式优化算法,通过模拟生物进化过程,在复杂搜索空间中寻找最优解或近似最优解。遗传算法的核心是将问题的解编码为染色体,每个染色体代表一个候选解,通过模拟生物进化中的选择、交叉、变异等操作,将适应度高的染色体保留并繁殖,同时引入新的基因多样性,逐代优化种群,最终逼近最优解。
2025-05-04 22:44:11
494
原创 启发式算法-蚁群算法
蚁群算法是模拟蚂蚁觅食行为的仿生优化算法,原理是信息素的正反馈机制,蚂蚁通过释放信息素来引导同伴找到最短路径。把问题的元素抽象为多条路径,每次迭代时为每只蚂蚁构建一个解决方案,该解决方案对应一条完整的路径,每次迭代后对所有路径上的信息素按一定比例模拟自然蒸发,避免局部最优,然后找出当前的最优路径进行信息素增强,在之后的迭代中蚂蚁就会倾向于选择信息素浓度高的路径,经过多次迭代后,找出全局的最优路径。该算法通常用于解决旅行商等NP难问题,算法性能依赖参数,有一定的玄学。
2025-05-03 23:54:59
729
原创 kubernetes(三)
Pod是k8s中最小的可部署和可管理的计算单元,每个Pod中包含一个或者多个容器,这些容器能够划分为两类:一类是用户程序的容器,其数量不固定,可根据实际需求进行调整,另一类则是Pause容器,它是每个Pod中存在的根容器,Pause容器主要有两个作用
2025-02-05 01:27:23
1178
1
原创 kubernetes(二)
在Kubernetes系统中,Namespace是一种至关重要的资源类型,其主要功能在于实现多套环境的资源隔离或者多租户的资源隔离,默认情况下所有的Pod都能够相互访问,但如果不想让两个Pod之间存在互相访问,就可以把这两个Pod分别划分到不同的Namespace当中,Kubernetes可以把集群内部的资源分配至不同的Namespace,在逻辑上构建出一个个组,从而能够对不同组的资源进行隔离式的使用和管理。
2025-02-03 23:33:49
1540
原创 Kubernetes(一)
Kubernetes(简称K8s)是一个开源的容器编排平台,已经成为现代云原生应用的核心技术,主要应用于对容器化应用程序的自动化部署、扩展以及管理。k8s配备了一组核心组件以及一系列功能,这些组件能够实现容器的调度、负载均衡、服务发现以及故障恢复等功能。
2025-01-29 00:29:51
1143
原创 JWT令牌
JSON Web Token,简称JWT,是一种开放标准,以JSON对象为载体,用于在通信双方之间安全地传输信息,通常被用于身份验证和授权认证。JWT由三部分组成:头部(Header)、载荷(Payload)和签名(Signature)。
2025-01-24 01:10:51
1304
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅