省赛过去一段时间了,现在复盘下,省赛报完名后一直没准备所以没打算参赛,直到比赛前两天才决定参加,赛前两天匆匆忙忙下载安装了比赛要用的编译器eclipse,当时连编译和运行怎么操作都不知道,平时用的都是idea,就简单熟悉了下输入输出就去比赛了,比赛那天天还没亮,早早出发就去赛点了,赛后也不知ac了多少,结果出来省一等奖进入国赛,这是第一次参加java赛道的,可以说完全没准备,能进国赛靠的是大学打比赛时的基础和运气好,不过大学参加的是cpp组别的,编程语言不一样,但算法思想感觉还是通用的,国赛不打算去参加了,这段时间日夜颠倒,打算出去玩几天缓缓,先去爬个衡山。

1.数位倍数
【问题描述】
请问在 1 至 202504(含)中,有多少个数的各个数位之和是 5 的整数倍。例如:5、19、8025 都是这样的数。
思路:统计每个数字的数位总和,判断是否5的倍数进行累加。
代码
import java.util.*;
public class Main {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
public static void main(String[] args){
int ans = 0;
for (int i = 1; i <= 202504; i++) {
int x = i;
int cnt = 0;
while (x != 0) {
cnt += x % 10;
x /= 10;
}
if (cnt % 5 == 0) {
ans++;
}
}
out.println(ans);
out.flush();
out.close();
}
}
答案:40500
2.IPv6
【问题描述】
小蓝最近在学习网络工程相关的知识。他最近学习到,IPv6 地址本质上是一个 128 位的二进制数,而字符串形式的 IPv6 地址是由被冒号分开的八段 16 进制数组成的,例如,下面每行是一个字符串形式的 IPv6 地址:
0000:0000:0000:0000:0000:0000:0000:0000
0000:0001:0000:0000:0000:0001:0000:0000
0000:0001:00ab:0000:0023:0000:0a00:0e00
0000:0000:00ab:0000:000a:0001:0a00:0e00
0000:0000:00ab:0000:0000:0001:0a00:0e00
其中,每一段最长 4 位,且每一段的前导零都可以去掉(如果 4 位都为 0 需要写成 0)。
另外,IPv6 地址还可以将其中相邻的值为 0 的段合并压缩起来,用两个冒号来表示,不过只能压缩一段。
例如上述地址最短的压缩后的形式分别为
::
0:1::1:0:0
0:1:ab:23:0:a00:e00
::ab:0:a:1:a00:e00
0:0:ab::1:a00:e00
小蓝想知道,所有 IPv6 地址的最短压缩形式的长度的和为多少?由于答案很大(甚至超过了 128 位二进制整数的范围),请填写答案时填写这个总和除以10^9+7的余数。
思路: dfs+组合数学,先通过dfs 生成段长度组合,每个段的长度a[i]可取0-4,再计算每段的种类数15×16^(len-1)(15表示非 0 首字符数,16^(len-1)为后面字符数),IPv6码总种类数等于所有段种类数的乘积,然后再计算IPV6码压缩后长度=不压缩前长度-压缩的0序列长度,最终将所有情况的长度进行累加。
代码
import java.io.*;
public class Main{
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
private static final int MOD = 1000000007;
private static final int N = 8;
private static int[] a = new int[N + 1];
private static long[] fact = new long[5];
private static long ans = 0;
public static void main(String[] args) {
// 初始化16的幂次数组
fact[0] = 1;
for (int i = 1; i < 5; i++) {
fact[i] = fact[i - 1] * 16 % MOD;
}
dfs(1);
System.out.println(ans);
}
//dfs生成所有可能的段长度组合
private static void dfs(int x) {
if (x == N + 1) {
// 计算当前组合的总种类数和长度
long sum = 1;
for (int i = 1; i <= N; i++) {
int len = a[i];
if (len != 0) {
// 计算当前段的种类数:(16-1) * 16^(len-1)
sum = sum * fact[len - 1] % MOD;
sum = sum * 15 % MOD;
}
}
// 计算当前组合的长度
int currentLength = getLength();
sum = sum * currentLength % MOD;
ans = (ans + sum) % MOD;
return;
}
// 枚举当前段的长度(0-4)
for (int i = 0; i <= 4; i++) {
a[x] = i;
dfs(x + 1);
}
}
//计算当前段组合压缩后的IPv6码长度
private static int getLength() {
int len = 0;
for (int i = 1; i <= N; i++) {
if (a[i] == 0) {
len++; // 0段计为1个字符
} else {
len += a[i]; // 非0段计为实际长度
}
}
len += 7;
int maxCompress = 0;
int left = -1; // 连续0段的左边界
for (int right = 1; right <= N; right++) {
if (a[right] == 0) {
if (left == -1) {
left = right;
}
// 计算当前连续0段的可压缩长度
int currentCompress;
if (right == N) {
if (left == 1) { // 全0压缩
currentCompress = 2 * (right - left) - 1;
} else {
currentCompress = 2 * (right - left);
}
} else if (left == 1) {
currentCompress = 2 * (right - left);
} else { // 中间位置的连续0段
currentCompress = 2 * (right - left) + 1;
}
maxCompress = Math.max(maxCompress, currentCompress);
} else {
left = -1; // 遇到非0段,重置左边界
}
}
return len - maxCompress; // 总长度减去最大压缩长度
}
}
答案:905307083
3.变换数组
【问题描述】
输入一个数组 a ,包含有 n 个元素 a1,a2,…,an。对这个数组进行 m 次变换,每次变换会将数组 a 中的每个元素 ai 转换为 ai · bitCount(ai)。其中 bitCount(x) 表示数字 x 的二进制表示中 1 出现的次数,例如 bitCount(3)=2,因为 3 的二进制表示为 11,其中 1 出现了两次。
请输出变换之后的数组内容。
【输入格式】
输入的第一行包含一个正整数 n ,表示数组 a 中的元素个数。
第二行包含 n 个整数 a1,a2,…,an,相邻整数之间使用一个空格分隔。
第三行包含一个整数 m,表示变换次数。
【输出格式】
输出一行,包含 n 个整数,相邻整数之间使用一个空格分隔,表示变换之后得到的数组 a。
【样例输入】
2
5 7
2
【样例输出】
20 63
思路:计算每个元素对应二进制中1的个数,进行相乘即可。
代码
import java.io.*;
import java.util.*;
public class Main {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
static final int N = 1010;
static int n, m;
static int[] a = new int[N];
// 计算数字二进制中1的个数
static int count(int x) {
int cnt = 0;
while (x != 0) {
cnt += x % 2;
x /= 2;
}
return cnt;
}
public static void main(String[] args) {
n = Int();
for (int i = 1; i <= n; i++) {
a[i] = Int();
}
m = Int();
while (m-- > 0) {
for (int i = 1; i <= n; i++) {
a[i] *= count(a[i]);
}
}
for (int i = 1; i <= n; i++) {
out.print(a[i] + " ");
}
out.flush();
out.close();
}
}
4.最大数字
【问题描述】
我们有 n 个连续的整数 1,2,3,…,n,可以自由排列它们的顺序。
然后,我们把这些数字转换成二进制表示,按照排列顺序拼接形成一个新的二进制数。
我们的目标是让这个二进制数的值最大,并输出这个二进制对应的十进制表示。
【输入格式】
输入一行包含一个正整数 n 。
【输出格式】
输出一行包含一个整数表示答案。
【样例输入】
3
【样例输出】
30
【样例说明】
1 的二进制为 1;2 的二进制为 10;3 的二进制为 11;其组成的最大的二进制数字为 11110,对应的十进制数字为 30。
思路:自定义排序+大数运算,将1 − n 所有数的二进制放入集合后进行排序,然后对排序后的二进制字符串从后往前进行运算转换成10进制。
代码
import java.io.*;
import java.math.BigInteger;
import java.util.*;
public class Main {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
public static void main(String[] args) {
int n = Int();
List<String> list = new ArrayList<>();
for (int i = 1; i <= n; ++i) {
list.add(itos(i));
}
Collections.sort(
list,
new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
return (o1 + o2).compareTo(o2 + o1) > 0 ? 1 : -1;
}
});
StringBuilder sb = new StringBuilder();
for (int i = list.size() - 1; i >= 0; --i) {
sb.append(list.get(i));
}
BigInteger sum = new BigInteger("0");
BigInteger d = new BigInteger("1");
int len = sb.length();
for (int i = len - 1; i >= 0; --i) {
if (sb.charAt(i) == '1') {
sum = sum.add(d);
}
d = d.multiply(new BigInteger("2"));
}
out.println(sum);
out.flush();
out.close();
}
public static String itos(int n) {
StringBuilder sb = new StringBuilder();
while (n != 0) {
sb.append(n % 2);
n /= 2;
}
return sb.reverse().toString();
}
}
5.小说
【问题描述】
小蓝是一位网络小说家。现在他正在撰写一部新的推理小说,这部小说有 n 个不同的人物。
小说的每一章都有以下三种情节的一种:
A 发现 B 不知道真相。
A 发现 B 知道真相。
A 知道了真相。
为了保证读者的协调和新鲜感,小蓝的小说还要满足以下要求:
“B 发现 A 不知道真相”不能在 “A 知道了真相”后。
“B 发现 A 知道真相”不能在 “A 知道了真相”前。
“B 发现 A 不知道真相”不能在 “B 发现 A 知道真相”后。
相邻的两章情节类型不同,例如如果第一章是 A 发现 B 不知道真相那么第二章就不能是 C 发现 D 不知道真相。
完全相同的情节不能出现两次。
现在小蓝希望知道,他最多能写多少章。
输入的第一行包含一个正整数 n,表示小说人数。
输入
2
输出
6
思路:对于 n 个角色,当 n=1 时,最多可写章节数为为 1;当 n≥2 时,答案为2n^2−3n+4.
分为以下几种情况:
相邻角色:假设角色甲刚知真相,下一个知真相的是角色乙
情况1:除乙外的n−1个角色发现乙不知道真相(共n−1次)
情况2:除甲外的n−1个角色发现甲知道真相(共n−1次)
每对相邻角色有2(n−1)种可能,共n−1对相邻角色,总共有2(n−1)2个情节。
知真相的情况:
情况3:每个角色知道真相对应1个情节,共n个情节
边界处理:
情况4
第一个角色知真相前:只能有情况1
最后一个角色知真相后:只能有情况2,所以边界总共2个情节,最终2n^2−3n+4
代码
import java.io.*;
import java.util.*;
public class Test2 {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
public static void main(String[] args) {
long n= Lon();
if(n==1){
out.println(1);
}
else{
out.println(2*n*n-3*n+4);
}
out.flush();
out.close();
}
}
6.01串
【问题描述】
给定一个由 0,1,2,3…的二进制表示拼接而成的长度无限的 01 串。其前若干位形如 011011100101110111… 。请求出这个串的前 x 位里有多少个 1 。
【输入格式】
输入的第一行包含一个正整数 x 。
【输出格式】
输出一行包含一个整数表示答案。
【样例输入】
7
【样例输出】
5
思路:分段统计+位运算,将自然数(0,1,2,3,…)的二进制拼接而成的01 串分为两段处理,分别是前面的完整段和后面的不完整段,先计算有多少个完整的自然数段被完全包含在前x位中,再处理剩余部分,对最后一个不完整的自然数段,统计其中前mod位内的1的个数。
代码
import java.io.*;
import java.util.*;
public class Test2 {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
public static void main(String[] args) {
long x = Lon();
x--;
long res = 0;
long i;
for (i = 0; ; i++) {
long term = (i + 1) * (1L << i);
if (x < term) break;
x -= term;
res += (1L << i);
}
res += x / (i + 1);
long mod = x % (i + 1);
long sumResult = getSum(res);
long popResult = popCount(res + 1 >> (int) (Math.log(res + 1) / Math.log(2)) - (int) mod + 1);
out.println(sumResult + popResult);
out.flush();
out.close();
}
//计算二进制中1的个数
private static long popCount(long x) {
long res = 0;
while (x != 0) {
res += x & 1;
x >>>= 1;
}
return res;
}
// 计算所有自然数二进制中1的总个数
private static long getSum(long x) {
long res = 0;
long cnt = 0;
x++; // 转换为闭区间[1, x]
while (x != 0) {
if ((x & 1) != 0) {
// 计算当前位为1时的贡献
res += (cnt * (1L << (cnt - 1))) + ((1L << cnt) * popCount(x >> 1));
}
x >>>= 1;
cnt++;
}
return res;
}
}
7.甘蔗
【问题描述】
小蓝种了一排甘蔗,甘蔗共 n 根,第 i 根甘蔗的高度为 ai 。小蓝想砍一些甘蔗下来品尝,但是他有强迫症,不希望甘蔗的高度显得乱糟糟的。具体来说,他给出了一个大小为 m 的整数集合 B = {b1,b2,…,bm} ,他希望在砍完甘蔗后,任意两根相邻的甘蔗之间的高度差 |ai - ai+1| 都要在这个集合 B 中。小蓝想知道他最少需要砍多少根甘蔗(对于高度为 h 的甘蔗,他可以将其砍成 x 高度的甘蔗,x ∈{0,1,2,…,h - 1})。
【输入格式】
输入的第一行包含两个正整数 n,m,用一个空格分隔。
第二行包含 n 个正整数 a1,a2,…,an ,相邻整数之间使用一个空格分隔。
第三行包含 m 个正整数 b1,b2,…,bm ,相邻整数之间使用一个空格分隔。
【输出格式】
输出一行包含一个整数表示答案。如果不能满足条件,输出 -1 。
【样例输入】
6 3
6 7 3 4 9 12
2 3 5
【样例输出】
2
【样例说明】
其中一种方案:将 a2 砍为 3,再将 a3 砍为 1。
思路:动态规划,先确定dp表达式, dp[i][j]表示第i根甘蔗在高度为 j时,符合条件时最少需要砍多少根甘蔗,然后确定状态转移方程式,对于每根甘蔗的高度 j 是由前一根甘蔗的 j-b[k] 和 j+b[k] 转移过来,但需要注意这两个状态的高度必须在前一根甘蔗的高度范围内,然后进行初始化,当第一根甘蔗高度为a[1]时dp[1][a[1]] = 0,高度为i (i<a[1])时 dp[1][i] = 1,其余初始化为无穷大。
代码
import java.io.*;
import java.util.*;
public class Test2 {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
public static void main(String[] args) {
int n =Int();
int m =Int();
int[] a = new int[n + 1];
int[] b = new int[m + 1];
for (int i = 1; i <= n; i++) {
a[i] = Int();
}
for (int i = 1; i <= m; i++) {
b[i] = Int();
}
int[][] dp = new int[n + 1][1001];
for(int i = 0;i <= n; ++i){
for(int j = 0; j <= 1000; ++j){
dp[i][j] = Integer.MAX_VALUE/2;
}
}
dp[1][a[1]] = 0;
for (int i = 0; i < a[1]; ++i) {
dp[1][i] = 1;
}
for (int i = 2; i <= n; ++i) {
for (int j = 0; j <= a[i]; ++j) {
for (int k = 1; k <= m; ++k) {
if (j == a[i]) {
if (j - b[k] >= 0) dp[i][j] = Math.min(dp[i - 1][j - b[k]], dp[i][j]);
if (j + b[k] <= a[i - 1]) dp[i][j] = Math.min(dp[i - 1][j + b[k]], dp[i][j]);
} else {
if (j - b[k] >= 0) dp[i][j] = Math.min(dp[i - 1][j - b[k]]+1, dp[i][j]);
if (j + b[k] <= a[i - 1]) dp[i][j] = Math.min(dp[i - 1][j + b[k]] + 1, dp[i][j]);
}
}
}
}
int res = dp[n][0];
for (int i = 1; i <= a[n]; ++i) {
res = Math.min(res, dp[n][i]);
}
out.println(res == Integer.MAX_VALUE/2 ? -1 : res);
out.flush();
out.close();
}
}
8.原料采购
小蓝负责一家工厂的原料采购。
工厂有一辆运货卡车,其容量为 m。
工厂附近的采购点都在同一条路的同一方向上,一共有 n 个,每个采购点和工厂的距离各不相同。其中,第 i 个采购点的价格为 ai, 库存为 bi, 距离为 ci。
卡车每行驶一单位长度的路径就需要额外花费 o。(返程没有花费,你也可以认为 o 实际是行驶两单位长度的花费)
请计算将卡车装满最少需要花费多少钱,如果没有任何方案可以装满请输出 −1。
输入格式
输入的第一行包含三个正整数 n,m,o,相邻整数之间使用一个空格分隔。
接下来 n 行,每行包含三个正整数 ai,bi,ci 表示一个采购点,相邻整数之间使用一个空格分隔。
输出格式
输出一行包含一个整数表示答案,即装满卡车所需的最小花费。
输入输出样例
输入
3 5 1
99 9 1
3 4 99
1 2 190
输出
201
思路:贪心+优先队列,使用最大堆将采购点的原料按价格从高到低排序,先从前到后遍历原料装入卡车,当卡车装满后,将遍历到原料的价格与最大堆中堆顶原料的最高价格进行比较,若当前价格低于堆顶原料,则替换堆顶原料,更新总费用,并记录以当前点为最远距离的总费用。
代码
import java.io.*;
import java.util.*;
public class Main {
private static StreamTokenizer st =
new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
private static PrintWriter out =
new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
private static int Int() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (int) st.nval;
}
private static Long Lon() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return (long) st.nval;
}
private static Double Dou() {
try {
st.nextToken();
} catch (IOException e) {
throw new RuntimeException(e);
}
return st.nval;
}
private static String Line() {
String s = "";
try {
s = br.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
return s;
}
static final int MAXN = 1000005;
static final long INF = (long) 3e18;
static int n, m, o;
static long[] a = new long[MAXN];
static long[] b = new long[MAXN];
static long[] c = new long[MAXN];
static long cost, use, sum;
static long ans = INF;
static class Node implements Comparable<Node> {
long price;
long wei;
public Node(long price, long wei) {
this.price = price;
this.wei = wei;
}
@Override
public int compareTo(Node x) {
return Long.compare(x.price, this.price); // 大顶堆
}
}
public static void main(String[] args) {
n = Int();
m = Int();
o = Int();
for (int i = 1; i <= n; i++) {
a[i] = Lon();
b[i] = Lon();
c[i] = Lon();
use += b[i];
}
if (use < m) {
out.println(-1);
return;
}
PriorityQueue<Node> q = new PriorityQueue<>();
for (int i = 1; i <= n; i++) {
if (cost + b[i] <= m) {
q.offer(new Node(a[i], b[i]));
cost += b[i];
sum += (a[i] * b[i]);
} else {
if (cost < m) {
long delta = m - cost;
q.offer(new Node(a[i], delta));
b[i] -= delta;
sum += a[i] * delta;
cost = m;
}
while (!q.isEmpty() && b[i] > 0) {
Node u = q.poll();
if (u.price <= a[i]) {
q.offer(u);
break;
}
if (b[i] >= u.wei) {
q.offer(new Node(a[i], u.wei));
b[i] -= u.wei;
sum -= (u.price - a[i]) * u.wei;
} else {
q.offer(new Node(a[i], b[i]));
q.offer(new Node(u.price, u.wei - b[i]));
sum -= (u.price - a[i]) * b[i];
b[i] = 0;
}
}
ans = Math.min(ans, sum + c[i] * o);
}
}
out.println(ans);
out.flush();
out.close();
}
}