第十六届蓝桥杯复盘


省赛过去一段时间了,现在复盘下,省赛报完名后一直没准备所以没打算参赛,直到比赛前两天才决定参加,赛前两天匆匆忙忙下载安装了比赛要用的编译器eclipse,当时连编译和运行怎么操作都不知道,平时用的都是idea,就简单熟悉了下输入输出就去比赛了,比赛那天天还没亮,早早出发就去赛点了,赛后也不知ac了多少,结果出来省一等奖进入国赛,这是第一次参加java赛道的,可以说完全没准备,能进国赛靠的是大学打比赛时的基础和运气好,不过大学参加的是cpp组别的,编程语言不一样,但算法思想感觉还是通用的,国赛不打算去参加了,这段时间日夜颠倒,打算出去玩几天缓缓,先去爬个衡山。
在这里插入图片描述

1.数位倍数

【问题描述】
 请问在 1 至 202504(含)中,有多少个数的各个数位之和是 5 的整数倍。例如:5、19、8025 都是这样的数。

思路:统计每个数字的数位总和,判断是否5的倍数进行累加。

代码

import java.util.*;

public class Main {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }
    public static void main(String[] args){
        int ans = 0;
        for (int i = 1; i <= 202504; i++) {
            int x = i;
            int cnt = 0;
            while (x != 0) {
                cnt += x % 10;
                x /= 10;
            }
            if (cnt % 5 == 0) {
                ans++;
            }
        }
        out.println(ans);
        out.flush();
        out.close();
    }
}


答案:40500

2.IPv6

【问题描述】
    小蓝最近在学习网络工程相关的知识。他最近学习到,IPv6 地址本质上是一个 128 位的二进制数,而字符串形式的 IPv6 地址是由被冒号分开的八段 16 进制数组成的,例如,下面每行是一个字符串形式的 IPv6 地址:

0000:0000:0000:0000:0000:0000:0000:0000
0000:0001:0000:0000:0000:0001:0000:0000
0000:0001:00ab:0000:0023:0000:0a00:0e00
0000:0000:00ab:0000:000a:0001:0a00:0e00
0000:0000:00ab:0000:0000:0001:0a00:0e00

其中,每一段最长 4 位,且每一段的前导零都可以去掉(如果 4 位都为 0 需要写成 0)。
另外,IPv6 地址还可以将其中相邻的值为 0 的段合并压缩起来,用两个冒号来表示,不过只能压缩一段。
例如上述地址最短的压缩后的形式分别为

::
0:1::1:0:0
0:1:ab:23:0:a00:e00
::ab:0:a:1:a00:e00
0:0:ab::1:a00:e00

小蓝想知道,所有 IPv6 地址的最短压缩形式的长度的和为多少?由于答案很大(甚至超过了 128 位二进制整数的范围),请填写答案时填写这个总和除以10^9+7的余数。
    
思路: dfs+组合数学,先通过dfs 生成段长度组合,每个段的长度a[i]可取0-4,再计算每段的种类数15×16^(len-1)(15表示非 0 首字符数,16^(len-1)为后面字符数),IPv6码总种类数等于所有段种类数的乘积,然后再计算IPV6码压缩后长度=不压缩前长度-压缩的0序列长度,最终将所有情况的长度进行累加。

代码

import java.io.*;

public class Main{
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }
    private static final int MOD = 1000000007;
    private static final int N = 8;
    private static int[] a = new int[N + 1];
    private static long[] fact = new long[5];
    private static long ans = 0;

    public static void main(String[] args) {
        // 初始化16的幂次数组
        fact[0] = 1;
        for (int i = 1; i < 5; i++) {
            fact[i] = fact[i - 1] * 16 % MOD;
        }

        dfs(1);
        System.out.println(ans);
    }


    //dfs生成所有可能的段长度组合
    private static void dfs(int x) {
        if (x == N + 1) {
            // 计算当前组合的总种类数和长度
            long sum = 1;
            for (int i = 1; i <= N; i++) {
                int len = a[i];
                if (len != 0) {
                    // 计算当前段的种类数:(16-1) * 16^(len-1)
                    sum = sum * fact[len - 1] % MOD;
                    sum = sum * 15 % MOD;
                }
            }
            // 计算当前组合的长度
            int currentLength = getLength();
            sum = sum * currentLength % MOD;
            ans = (ans + sum) % MOD;
            return;
        }
        // 枚举当前段的长度(0-4)
        for (int i = 0; i <= 4; i++) {
            a[x] = i;
            dfs(x + 1);
        }
    }


    //计算当前段组合压缩后的IPv6码长度
    private static int getLength() {
        int len = 0; 
        for (int i = 1; i <= N; i++) {
            if (a[i] == 0) {
                len++; // 0段计为1个字符
            } else {
                len += a[i]; // 非0段计为实际长度
            }
        }
        len += 7; 

        int maxCompress = 0;
        int left = -1; // 连续0段的左边界
        for (int right = 1; right <= N; right++) {
            if (a[right] == 0) {
                if (left == -1) {
                    left = right; 
                }
                // 计算当前连续0段的可压缩长度
                int currentCompress;
                if (right == N) { 
                    if (left == 1) { // 全0压缩
                        currentCompress = 2 * (right - left) - 1;
                    } else {
                        currentCompress = 2 * (right - left);
                    }
                } else if (left == 1) {
                    currentCompress = 2 * (right - left);
                } else { // 中间位置的连续0段
                    currentCompress = 2 * (right - left) + 1;
                }
                maxCompress = Math.max(maxCompress, currentCompress);
            } else {
                left = -1; // 遇到非0段,重置左边界
            }
        }
        return len - maxCompress; // 总长度减去最大压缩长度
    }
}

答案:905307083

3.变换数组

【问题描述】
    输入一个数组 a ,包含有 n 个元素 a1,a2,…,an。对这个数组进行 m 次变换,每次变换会将数组 a 中的每个元素 ai 转换为 ai · bitCount(ai)。其中 bitCount(x) 表示数字 x 的二进制表示中 1 出现的次数,例如 bitCount(3)=2,因为 3 的二进制表示为 11,其中 1 出现了两次。
    请输出变换之后的数组内容。
【输入格式】
    输入的第一行包含一个正整数 n ,表示数组 a 中的元素个数。
    第二行包含 n 个整数 a1,a2,…,an,相邻整数之间使用一个空格分隔。
    第三行包含一个整数 m,表示变换次数。
【输出格式】
    输出一行,包含 n 个整数,相邻整数之间使用一个空格分隔,表示变换之后得到的数组 a。
【样例输入】

2
5 7
2

【样例输出】

20 63

思路:计算每个元素对应二进制中1的个数,进行相乘即可。

代码

import java.io.*;
import java.util.*;

public class Main {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }

    static final int N = 1010;
    static int n, m;
    static int[] a = new int[N];

    // 计算数字二进制中1的个数
    static int count(int x) {
        int cnt = 0;
        while (x != 0) {
            cnt += x % 2;
            x /= 2;
        }
        return cnt;
    }

    public static void main(String[] args) {
        n = Int();
        for (int i = 1; i <= n; i++) {
            a[i] = Int();
        }

        m = Int();
        while (m-- > 0) {
            for (int i = 1; i <= n; i++) {
                a[i] *= count(a[i]);
            }
        }

        for (int i = 1; i <= n; i++) {
            out.print(a[i] + " ");
        }

        out.flush();
        out.close();
    }
}

4.最大数字

【问题描述】
我们有 n 个连续的整数 1,2,3,…,n,可以自由排列它们的顺序。
然后,我们把这些数字转换成二进制表示,按照排列顺序拼接形成一个新的二进制数。
我们的目标是让这个二进制数的值最大,并输出这个二进制对应的十进制表示。
【输入格式】
    输入一行包含一个正整数 n 。
【输出格式】
    输出一行包含一个整数表示答案。
【样例输入】

3

【样例输出】

30

【样例说明】
1 的二进制为 1;2 的二进制为 10;3 的二进制为 11;其组成的最大的二进制数字为 11110,对应的十进制数字为 30。

思路:自定义排序+大数运算,将1 − n 所有数的二进制放入集合后进行排序,然后对排序后的二进制字符串从后往前进行运算转换成10进制。

代码

import java.io.*;
import java.math.BigInteger;
import java.util.*;

public class Main {
  private static StreamTokenizer st =
      new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

  private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
  private static PrintWriter out =
      new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

  private static int Int() {
    try {
      st.nextToken();
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
    return (int) st.nval;
  }

  private static Long Lon() {
    try {
      st.nextToken();
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
    return (long) st.nval;
  }

  private static Double Dou() {
    try {
      st.nextToken();
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
    return st.nval;
  }

  private static String Line() {
    String s = "";
    try {
      s = br.readLine();
    } catch (IOException e) {
      throw new RuntimeException(e);
    }
    return s;
  }

  public static void main(String[] args) {
    int n = Int();
    List<String> list = new ArrayList<>();
    for (int i = 1; i <= n; ++i) {
      list.add(itos(i));
    }
    Collections.sort(
        list,
        new Comparator<String>() {
          @Override
          public int compare(String o1, String o2) {
            return (o1 + o2).compareTo(o2 + o1) > 0 ? 1 : -1;
          }
        });
    StringBuilder sb = new StringBuilder();
    for (int i = list.size() - 1; i >= 0; --i) {
      sb.append(list.get(i));
    }
    BigInteger sum = new BigInteger("0");
    BigInteger d = new BigInteger("1");
    int len = sb.length();
    for (int i = len - 1; i >= 0; --i) {
      if (sb.charAt(i) == '1') {
        sum = sum.add(d);
      }
      d = d.multiply(new BigInteger("2"));
    }
    out.println(sum);
    out.flush();
    out.close();
  }

  public static String itos(int n) {
    StringBuilder sb = new StringBuilder();
    while (n != 0) {
      sb.append(n % 2);
      n /= 2;
    }
    return sb.reverse().toString();
  }
}

5.小说

【问题描述】

小蓝是一位网络小说家。现在他正在撰写一部新的推理小说,这部小说有 n 个不同的人物。

小说的每一章都有以下三种情节的一种:

A 发现 B 不知道真相。
A 发现 B 知道真相。
A 知道了真相。

为了保证读者的协调和新鲜感,小蓝的小说还要满足以下要求:

B 发现 A 不知道真相”不能在 “A 知道了真相”后。
“B 发现 A 知道真相”不能在 “A 知道了真相”前。
“B 发现 A 不知道真相”不能在 “B 发现 A 知道真相”后。
相邻的两章情节类型不同,例如如果第一章是 A 发现 B 不知道真相那么第二章就不能是 C 发现 D 不知道真相。
完全相同的情节不能出现两次。

现在小蓝希望知道,他最多能写多少章。
输入的第一行包含一个正整数 n,表示小说人数。
输入

2

输出

6

思路:对于 n 个角色,当 n=1 时,最多可写章节数为为 1;当 n≥2 时,答案为2n^2−3n+4.

分为以下几种情况:
相邻角色:假设角色甲刚知真相,下一个知真相的是角色乙
情况1:除乙外的n−1个角色发现乙不知道真相(共n−1次)
情况2:除甲外的n−1个角色发现甲知道真相(共n−1次)
每对相邻角色有2(n−1)种可能,共n−1对相邻角色,总共有2(n−1)2个情节。
知真相的情况:
情况3:每个角色知道真相对应1个情节,共n个情节
边界处理:
情况4
第一个角色知真相前:只能有情况1
最后一个角色知真相后:只能有情况2,所以边界总共2个情节,最终2n^23n+4

代码

import java.io.*;
import java.util.*;

public class Test2 {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }

    public static void main(String[] args) {
        long n= Lon();
        if(n==1){
           out.println(1);
        }
        else{
            out.println(2*n*n-3*n+4);
        }
        out.flush();
        out.close();
    }
}

6.01串

【问题描述】
    给定一个由 0,1,2,3…的二进制表示拼接而成的长度无限的 01 串。其前若干位形如 011011100101110111… 。请求出这个串的前 x 位里有多少个 1 。
【输入格式】
    输入的第一行包含一个正整数 x 。
【输出格式】
    输出一行包含一个整数表示答案。
【样例输入】

7

【样例输出】

5

思路:分段统计+位运算,将自然数(0,1,2,3,…)的二进制拼接而成的01 串分为两段处理,分别是前面的完整段和后面的不完整段,先计算有多少个完整的自然数段被完全包含在前x位中,再处理剩余部分,对最后一个不完整的自然数段,统计其中前mod位内的1的个数。

代码

import java.io.*;
import java.util.*;

public class Test2 {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }

    public static void main(String[] args) {
        long x = Lon();
        x--;
        long res = 0;
        long i;

        for (i = 0; ; i++) {
            long term = (i + 1) * (1L << i);
            if (x < term) break;
            x -= term;
            res += (1L << i);
        }

        res += x / (i + 1);
        long mod = x % (i + 1);
        long sumResult = getSum(res);
        long popResult = popCount(res + 1 >> (int) (Math.log(res + 1) / Math.log(2)) - (int) mod + 1);
       out.println(sumResult + popResult);
       out.flush();
       out.close();
    }

     //计算二进制中1的个数
    private static long popCount(long x) {
        long res = 0;
        while (x != 0) {
            res += x & 1;
            x >>>= 1;
        }
        return res;
    }

     // 计算所有自然数二进制中1的总个数
    private static long getSum(long x) {
        long res = 0;
        long cnt = 0;
        x++; // 转换为闭区间[1, x]

        while (x != 0) {
            if ((x & 1) != 0) {
                // 计算当前位为1时的贡献
                res += (cnt * (1L << (cnt - 1))) + ((1L << cnt) * popCount(x >> 1));
            }
            x >>>= 1;
            cnt++;
        }
        return res;
    }
}

7.甘蔗

【问题描述】
    小蓝种了一排甘蔗,甘蔗共 n 根,第 i 根甘蔗的高度为 ai 。小蓝想砍一些甘蔗下来品尝,但是他有强迫症,不希望甘蔗的高度显得乱糟糟的。具体来说,他给出了一个大小为 m 的整数集合 B = {b1,b2,…,bm} ,他希望在砍完甘蔗后,任意两根相邻的甘蔗之间的高度差 |ai - ai+1| 都要在这个集合 B 中。小蓝想知道他最少需要砍多少根甘蔗(对于高度为 h 的甘蔗,他可以将其砍成 x 高度的甘蔗,x ∈{0,1,2,…,h - 1})。
【输入格式】
    输入的第一行包含两个正整数 n,m,用一个空格分隔。
    第二行包含 n 个正整数 a1,a2,…,an ,相邻整数之间使用一个空格分隔。
    第三行包含 m 个正整数 b1,b2,…,bm ,相邻整数之间使用一个空格分隔。
【输出格式】
    输出一行包含一个整数表示答案。如果不能满足条件,输出 -1 。
【样例输入】

6 3
6 7 3 4 9 12
2 3 5

【样例输出】

2

【样例说明】

其中一种方案:将 a2 砍为 3,再将 a3 砍为 1。

思路:动态规划,先确定dp表达式, dp[i][j]表示第i根甘蔗在高度为 j时,符合条件时最少需要砍多少根甘蔗,然后确定状态转移方程式,对于每根甘蔗的高度 j 是由前一根甘蔗的 j-b[k] 和 j+b[k] 转移过来,但需要注意这两个状态的高度必须在前一根甘蔗的高度范围内,然后进行初始化,当第一根甘蔗高度为a[1]时dp[1][a[1]] = 0,高度为i (i<a[1])时 dp[1][i] = 1,其余初始化为无穷大。

代码

import java.io.*;
import java.util.*;

public class Test2 {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }

    public static void main(String[] args) {

        int n =Int();
        int m =Int();
        int[] a = new int[n + 1];
        int[] b = new int[m + 1];
        for (int i = 1; i <= n; i++) {
            a[i] = Int();
        }
        for (int i = 1; i <= m; i++) {
            b[i] = Int();
        }
        int[][] dp = new int[n + 1][1001];
        for(int i = 0;i <= n; ++i){
            for(int j = 0; j <= 1000; ++j){
                dp[i][j] = Integer.MAX_VALUE/2;
            }
        }
        dp[1][a[1]] = 0;
        for (int i = 0; i < a[1]; ++i) {
            dp[1][i] = 1;
        }
        for (int i = 2; i <= n; ++i) {
            for (int j = 0; j <= a[i]; ++j) {
                for (int k = 1; k <= m; ++k) {
                    if (j == a[i]) {
                        if (j - b[k] >= 0) dp[i][j] = Math.min(dp[i - 1][j - b[k]], dp[i][j]);
                        if (j + b[k] <= a[i - 1]) dp[i][j] = Math.min(dp[i - 1][j + b[k]], dp[i][j]);
                    } else {
                        if (j - b[k] >= 0) dp[i][j] = Math.min(dp[i - 1][j - b[k]]+1, dp[i][j]);
                        if (j + b[k] <= a[i - 1]) dp[i][j] = Math.min(dp[i - 1][j + b[k]] + 1, dp[i][j]);
                    }
                }
            }
        }
        int res = dp[n][0];
        for (int i = 1; i <= a[n]; ++i) {
            res = Math.min(res, dp[n][i]);
        }
       out.println(res == Integer.MAX_VALUE/2 ? -1 : res);
        out.flush();
        out.close();

    }
}

8.原料采购

小蓝负责一家工厂的原料采购。

工厂有一辆运货卡车,其容量为 m。

工厂附近的采购点都在同一条路的同一方向上,一共有 n 个,每个采购点和工厂的距离各不相同。其中,第 i 个采购点的价格为 ai​, 库存为 bi​, 距离为 ci​。

卡车每行驶一单位长度的路径就需要额外花费 o。(返程没有花费,你也可以认为 o 实际是行驶两单位长度的花费)

请计算将卡车装满最少需要花费多少钱,如果没有任何方案可以装满请输出 −1。
输入格式

输入的第一行包含三个正整数 n,m,o,相邻整数之间使用一个空格分隔。

接下来 n 行,每行包含三个正整数 ai​,bi​,ci​ 表示一个采购点,相邻整数之间使用一个空格分隔。
输出格式

输出一行包含一个整数表示答案,即装满卡车所需的最小花费。
输入输出样例

输入

3 5 1
99 9 1
3 4 99
1 2 190

输出

201

思路:贪心+优先队列,使用最大堆将采购点的原料按价格从高到低排序,先从前到后遍历原料装入卡车,当卡车装满后,将遍历到原料的价格与最大堆中堆顶原料的最高价格进行比较,若当前价格低于堆顶原料,则替换堆顶原料,更新总费用,并记录以当前点为最远距离的总费用。

代码

import java.io.*;
import java.util.*;

public class Main {
    private static StreamTokenizer st =
            new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));

    private static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
    private static PrintWriter out =
            new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));

    private static int Int() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (int) st.nval;
    }

    private static Long Lon() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return (long) st.nval;
    }

    private static Double Dou() {
        try {
            st.nextToken();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return st.nval;
    }

    private static String Line() {
        String s = "";
        try {
            s = br.readLine();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
        return s;
    }

    static final int MAXN = 1000005;
    static final long INF = (long) 3e18;
    static int n, m, o;
    static long[] a = new long[MAXN];
    static long[] b = new long[MAXN];
    static long[] c = new long[MAXN];
    static long cost, use, sum;
    static long ans = INF;

    static class Node implements Comparable<Node> {
        long price;
        long wei;

        public Node(long price, long wei) {
            this.price = price;
            this.wei = wei;
        }

        @Override
        public int compareTo(Node x) {
            return Long.compare(x.price, this.price); // 大顶堆
        }
    }

    public static void main(String[] args) {
        n = Int();
        m = Int();
        o = Int();
        for (int i = 1; i <= n; i++) {
            a[i] = Lon();
            b[i] = Lon();
            c[i] = Lon();
            use += b[i];
        }

        if (use < m) {
            out.println(-1);
            return;
        }

        PriorityQueue<Node> q = new PriorityQueue<>();

        for (int i = 1; i <= n; i++) {
            if (cost + b[i] <= m) {
                q.offer(new Node(a[i], b[i]));
                cost += b[i];
                sum += (a[i] * b[i]);
            } else {
                if (cost < m) {
                    long delta = m - cost;
                    q.offer(new Node(a[i], delta));
                    b[i] -= delta;
                    sum += a[i] * delta;
                    cost = m;
                }

                while (!q.isEmpty() && b[i] > 0) {
                    Node u = q.poll();
                    if (u.price <= a[i]) {
                        q.offer(u);
                        break;
                    }

                    if (b[i] >= u.wei) {
                        q.offer(new Node(a[i], u.wei));
                        b[i] -= u.wei;
                        sum -= (u.price - a[i]) * u.wei;
                    } else {
                        q.offer(new Node(a[i], b[i]));
                        q.offer(new Node(u.price, u.wei - b[i]));
                        sum -= (u.price - a[i]) * b[i];
                        b[i] = 0;
                    }
                }

                ans = Math.min(ans, sum + c[i] * o);
            }
        }

        out.println(ans);
        out.flush();
        out.close();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值