学习Unity3D的笔记

本文深入解析Unity3D中四元数的使用,包括四元数在旋转中的作用、常见API详解、方向表示法及应用实例。涵盖Debug.Log与Print的区别、解决脚本警告方法,以及VisualStudio高级保存选项的设置。
摘要由CSDN通过智能技术生成

在学习Unity3D时记录的笔记的笔记

Unity3D官网地址:https://www.unity.com/
Unity3D中文官网地址:https://www.unity.cn/

Unity3D中“There are inconsistent line endings in the ‘xxx’ script.”一类的警告的解决方案

学习Unity3D的时候经常会看到类似于下面这种警告:

There are inconsistent line endings in the ‘xxx’ script. Some are Mac OS X (UNIX) and some are Windows.
This might lead to incorrect numbers in stacktraces and compiler errors.Many text editors can fix this using Convert Line Endings menu commands.

虽然警告不影响正常使用,但是强迫症看到警告还是想要解决掉,网上查了查找到了原因:

通过Unity3D编辑器创建的脚本文件是以"LF"结尾(Unix平台),MonoDevelop IDE创建的也是以“LF”结尾(Unix平台),而直接用Visual Studio创建的文件是以“CR LF”结尾(Windows平台)。由于换行编码不一致导致报以上警告。

解决方案如下:
在Visual Studio 2019菜单栏中选择文件然后选择高级保存选项在这里插入图片描述
在行尾处选择Windows (CR LF)保存,以后通过Unity3D编辑器创建的文件将默认以“CR LF”换行。在这里插入图片描述

Visual Studio中没有高级保存选项的解决方案

如果Visual Studio中没有高级保存选项的,可以通过在菜单栏中选择工具选择自定义添加高级保存选项
在这里插入图片描述在这里插入图片描述在这里插入图片描述
添加高级保存选项后可以通过上下移选项来调整其位置
在这里插入图片描述

Unity3D中Debug.Log和Print的区别

在学习或使用Unity3D的时候,就会遇到调试的问题,在Unity3D中调试比较麻烦,不像在Visual Studio中可以直接设置断点来调,所以选择打印消息的方式来调试。

但是打印消息也有几种方式,一种的Print,一种的Debug.Log

PrintMonoBehaviour的一个成员。

Debug则是一个密闭的类。

所以在使用的范围上,Print必须要继承MonoBehaviour类,而Debug不用。

在Reflector中反编译UnityEngine这个DLL会发现Print方法的实现其实非常简单。Print就是通过Debug.Log来完成的。所以Print就是Debug.Log的一个简单封装

  public static void print(object message)
    {
        Debug.Log(message);
    }

Unity中关于四元数的API详解(转载自https://www.cnblogs.com/driftingclouds/p/6626183.html)

Quaternion类

Quaternion(四元数)用于计算Unity旋转。它们计算紧凑高效,不受万向节锁的困扰,并且可以很方便快速地进行球面插值。 Unity内部使用四元数来表示所有的旋转。

Quaternion是基于复数,并不容易直观地理解。 不过你几乎不需要访问或修改单个四元数参数(x,y,z,w); 大多数情况下,你只需要获取和使用现有的旋转(例如来自“Transform”),或者用四元数来构造新的旋转(例如,在两次旋转之间平滑插入)。
大部分情况下,你可能会使用到这些函数:

  • Quaternion.LookRotation,
  • Quaternion.Angle
  • Quaternion.Euler
  • Quaternion.Slerp
  • Quaternion.FromToRotation
  • Quaternion.identity。

Quaternion 是一个结构体,本身成员变量相对简单,可以作为函数参数高效传递。

Unity默认方向

在深入了解API之前,我们需要先明确一些基本的概念,就是方向、旋转究竟是如何表示的。
Unity中使用左手坐标系,假如把世界坐标系跟东南西北进行结合起来看,大致如下图所示:
在这里插入图片描述

默认的方向对应如下表:

坐标轴对应方向
+x右(东)
-x左(西)
+y
-y
+Z前(北)
-Z后(南)

假设以你自己身体为例,你站立在地面上,面朝北方,此时就是默认方向,也就是Unity中的方向就是面向+Z轴方向,那么此时+X轴在东方,+Y轴对应正上方。此时对应的欧拉角是(0,0,0),此时对应的前方矢量是(0,0,1),上方矢量是(0,1,0)。

这里我区分了左右上下前后的概念,因为这些概念同时也对应了Vector3类、Transform类中的相应的方向函数。

方向的表示法

①欧拉角表示法

假如你使用一组欧拉角表示旋转,XYZ三个参数代表相应轴向按照顺归YZX的旋转,因此(0、90、90)代表先进行+Z轴旋转90度,再沿着+Y轴进行90度旋转,更多详细内容可以参考前述文章《【Unity编程】Unity中的欧拉旋转》

②前方上方矢量界定法

编程过程中,大部分需要明确指定方位的时候就需要使用这个方法。要确定一个朝向,我们可以使用两个向量来确定:即前方矢量和上方矢量。当一个朝向的前方和上方确定之后,这个朝向也就完全确定了。
举例来说,如果现在只提供一个朝向,就是你现在面朝北方,那么这个方向已经完全确定了吗?显然没有。因为你右侧躺在地上,看向北方,还是在面朝北方,这时候就需要另外一个矢量,也就是上方。当给出上方之后,这个朝向就完全确定了。
上方需要严格给出吗?
在Unity中,我们很多时候,不需要给出严格的上方朝向。比如,仍然是上面那个例子,如果我面朝北方,先给出(0,0,1)代表我的前方矢量。那么,如果我给出的方向不是严格的上方矢量,比如是(0,0.5,0.5),是否可以?答案也是可以的,因为这两个矢量显然已经确定了一个方向,前方是严格的,而实际的上方可以通过前方朝着你给出的上方矢量旋转90度得出。也就是说,你给(0,1,0)作为上方矢量,和给出在下图中弧度范围内(不包含+Z和-Z)所有方向的矢量都是相同的结果。
在这里插入图片描述

③绕轴旋转界定法

第三种定义旋转的方法就是围绕某个指定的轴向旋转一定的角度。这个方法也可以确定一个相对旋转,它以从默认方向(此时前方+Z,上方+Y)出发,沿着指定的轴向进行指定角度的旋转,旋转后的前方和上方是确定的。因此这个方法也可以用来确定朝向。

④A向到B向相对旋转表示法

还有一种方法就是从A向到B向的相对旋转,这种表示了一个旋转的相对变化。比如A为(0,1,0),B为(0,0,1),也就是相对旋转量代表原来的上方被旋转到了前方,这样的一个四元数也可以用欧拉角表示成(90,0,0),也就是沿着+X轴旋转了90度。

注意上面四中表示方法中,有的明确表明了上方矢量,有的好像只明确了前方矢量,要明确的一点就是,它们都是从默认矢量出发的,如果没有明确指定上方朝向,那么就是使用默认的上方,也就是+Y方向。

成员变量
  • eulerAngles 欧拉角,返回当前四元数所对应的欧拉角
  • this[int] 可以使用类似数组和下标的形式从四元数中获取四个四元数参数
  • x、y、z、w 分别代表x、y、z、w 参数,具体代表的内容可以参考前文《【Unity编程】四元数(Quaternion)与欧拉角》,你最好不要通过修改四个参数来改变四元数,除非你真的非常了解它们的含义。

静态成员
identity 单位四元数,也就是默认的无旋转状态,此时与世界坐标相同,前方指向+Z,上方指向+Y

成员函数
函数形式解释
void Set(float new_x, float new_y, float new_z, float new_w)设置x、y、z、w 分量,与this[]功能相同
void SetFromToRotation(Vector3 fromDirection, Vector3 toDirection)设置成静态函数FromToRotation的结果
void SetLookRotation(Vector3 view, Vector3 up = Vector3.up)设置成静态函数LookRotation的结果
void ToAngleAxis(out float angle, out Vector3 axis)设置成静态函数AngleAxis的结果

说明:成员函数几个set方法多用于将当前四元数设置成目标四元数,目标四元数的构建方法与对应名称的静态函数相同。

静态函数
函数形式解释
static float Angle(Quaternion a, Quaternion b)计算两个四元数前方矢量之间的夹角度数
static Quaternion AngleAxis(float angle, Vector3 axis)构建一个四元数,它表示沿着一个轴旋转固定角度,即上述表示法③
static float Dot(Quaternion a, Quaternion b)计算两个四元数之间的点积,返回一个标量,这个函数一般用不到,它的点积不代表什么具体的物理含义,具体定义方法见我的前述文章
static Quaternion Euler(float x, float y, float z)构建一个四元数,它用欧拉旋转表示,即上述表示法①
static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection)构建一个四元数,它表示从指向fromDirection方向到指向toDirection方向的相对旋转量,见上述表示法④
static Quaternion Inverse(Quaternion rotation)构建一个四元数,它是指定的四元数的逆,也就是逆向旋转,比如原四元数表示相对+X轴旋转了90度,那么此函数结果就是相对+X轴旋转了-90度
static Quaternion Lerp(Quaternion a, Quaternion b, float t)构建一个四元数,表示从四元数a到b的球面插值,所谓的插值也就是中间旋转量,从a作为起点,此时对应t为0,到b为终点,此时对应t为1。当t取0-1之间的小数时,就代表了中间的插值结果。这个方法与Slerp相同,计算速度快,但是精度低,如果相对旋转变化量很小,则效果不理想
static Quaternion LerpUnclamped(Quaternion a, Quaternion b, float t)与Lerp相同,区别是,Lerp的t值会被钳制在[0,1]之间,而此方法则不会,t允许超出计算
static Quaternion LookRotation(Vector3 forward, Vector3 upwards = Vector3.up)构建一个四元数,使用前方上方矢量确定朝向,也就是上述表示法②
static Quaternion RotateTowards(Quaternion from, Quaternion to, float maxDegreesDelta)构建一个四元数,表示从一个四元数from(的前方)向着另外一个四元数(的前方)旋转,但不能超出指定的角度,也就是如果两个前方矢量夹角超过指定角度,则旋转到达指定角度时就停止,若是夹角本身不足的话,则结果直接为目标四元数to,与上述表示法④的意思很接近
static Quaternion Slerp(Quaternion a, Quaternion b, float t)球面插值,与Lerp功能相同,t值也被钳制,计算精度高,但是速度相对较慢
static Quaternion SlerpUnclamped(Quaternion a, Quaternion b, float t)与Slerp功能相同,只是t值不被钳制,允许超出计算
static Quaternion operator * (Quaternion lhs, Quaternion rhs)乘法运算符重载,当表示两个连续的旋转时,可以使用lhs * rhs的形式得出连续旋转的结果,lhs为左值,rhs为右值。注意左值是先进行的旋转,叠加右值旋转。用法示例:lhs = lhs * rhs;
static Vector3 operator *(Quaternion rotation, Vector3 point)乘法运算符重载,表示对一个矢量point施加旋转rotation,得出旋转后的结果矢量。用法示例:Vector3 result=rotation * point
验证前方上方矢量表示法

为了验证前方上方矢量表示法的实际上方会重新计算,我设计了以下小实验。
在这里插入图片描述
在场景中设置三个物体,它们的朝向是打乱的,从左到右分别对应1、2、3。可以使用以下代码将三个物体朝向调整为一致。

		//前方上方矢量界定法的实际上方会重新计算
        m_t1.transform.rotation = Quaternion.LookRotation(Vector3.forward, Vector3.up);
        m_t2.transform.rotation = Quaternion.LookRotation(Vector3.forward, new Vector3(0,0.5f,-0.5f));
        m_t3.transform.rotation = Quaternion.LookRotation(Vector3.forward, new Vector3(0,0.5f,0.5f));

在start方法中执行上述代码后,如下:
在这里插入图片描述
三个物体朝向是一致的,也就说明了上方矢量确实是进行了重新计算。

总结几种表示方法

下面使用代码总结几种表示法,对应同样的四元数,大致有四种表示方法。

        //旋转量的4种表示形式
        Quaternion q1=Quaternion.Euler(90, 0, 0);
        Quaternion q2 = Quaternion.LookRotation(Vector3.down ,Vector3.forward);
        Quaternion q3 = Quaternion.AngleAxis(90,Vector3.right);
        Quaternion q4 = Quaternion.FromToRotation(Vector3.up, Vector3.forward);
        showQ("q1",q1);
        showQ("q2",q2);
        showQ("q3",q3);
        showQ("q4",q4);

它们的输出结果是:
在这里插入图片描述
也就是说,这几种形式表示的四元数结果完全相同。

将四元数旋转应用于子弹射击示例

当枪管转动起来,子弹仍然沿着正确的朝向发射出去,可以使用很简单的几句话,修改之前的代码后如下:

            Bullet_2 bullet = m_compPool.takeUnit<Bullet_2>();
            //发射时,将子弹的初始位置为枪口的当前位置
            bullet.m_transform.position = m_transform.position;
            //将子弹的初始化旋转设置为指向当前枪口前方
            bullet.m_transform.rotation = Quaternion.LookRotation(m_transform.forward);

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值